We have performed a study of several cesium oven designs. A comparison between recirculating (or sticking-wall) and collimating (or re-emitting-wall) ovens is made in order to extract the most efficient design in terms of beam brightness. Unfortunately, non-reproducible behaviors have been observed, and the most often observed output flux is similar to the sticking-wall case, which is the lowest theoretical value of the two cases, with a beam brightness close to 1018 at. sr−1 s−1 cm−2. The reason of this universally observed behavior is unclear despite having tested several materials for the collimating tube. Conclusion on possible improved design based on sticking of cesium on several (un)cleaned surfaces is given.

1.
K. J.
Ross
and
B.
Sonntag
, “
High temperature metal atom beam sources
,”
Rev. Sci. Instrum.
66
(
9
),
4409
4433
(
1995
).
2.
C. B.
Lucas
,
Atomic and Molecular Beams: Production and Collimation
(
CRC Press
,
2013
).
3.
B.
Jana
,
A.
Majumder
,
K. B.
Thakur
, and
A. K.
Das
, “
Design principles of a linear array multi-channel effusive metal-vapor atom source
,”
Rev. Sci. Instrum.
84
(
10
),
106113
(
2013
).
4.
R.
Senaratne
,
S. V.
Rajagopal
,
Z. A.
Geiger
,
K. M.
Fujiwara
,
V.
Lebedev
, and
D. M.
Weld
, “
Effusive atomic oven nozzle design using an aligned microcapillary array
,”
Rev. Sci. Instrum.
86
(
2
),
023105
(
2015
).
5.
J. B.
Anderson
,
Molecular Beams from Nozzle Sources
(
Marcel Dekker
,
New York
,
1974
).
6.
W.
Steckelmacher
, “
Knudsen flow 75 years on: The current state of the art for flow of rarefied gases in tubes and systems
,”
Rep. Prog. Phys.
49
(
10
),
1083
(
1986
).
7.
N.
Ramsey
,
Molecular Beams
, (
Oxford University Press
,
1985
).
8.
G.
Scoles
,
Atomic and Molecular Beam Methods
(
Oxford University Press
,
New York
,
1988
), Vol. 1.
9.
H.
Pauly
,
Atom, Molecule, and Clusterbeams I: Basic Theory, Production and Detection of Thermal Beams
(
Springer-Verlag
,
Berlin
,
2000
).
10.
H.
Pauly
,
Atom, Molecule, and Cluster Beams II: Cluster Beams, Fast and Slow Beams, Accessory Equipment and Applications
(
Springer Science & Business Media
,
2013
), Vol. 32.
11.
L.
Kime
,
A.
Fioretti
,
Y.
Bruneau
,
N.
Porfido
,
F.
Fuso
,
M.
Viteau
,
G.
Khalili
,
N.
Šantić
,
A.
Gloter
,
B.
Rasser
,
P.
Sudraud
,
P.
Pillet
, and
D.
Comparat
, “
High-flux monochromatic ion and electron beams based on laser-cooled atoms
,”
Phys. Rev. A
88
(
3
),
033424
(
2013
).
12.
Y.
Bruneau
,
G.
Khalili
,
P.
Pillet
, and
D.
Comparat
, “
Guided and focused slow atomic beam from a 2 dimensional magneto optical trap
,”
Eur. Phys. J. D
68
(
4
),
92
(
2014
).
13.
M.
Viteau
,
M.
Reveillard
,
L.
Kime
,
B.
Rasser
,
P.
Sudraud
,
Y.
Bruneau
,
G.
Khalili
,
P.
Pillet
,
D.
Comparat
,
I.
Guerri
 et al, “
Ion microscopy based on laser-cooled cesium atoms
,”
Ultramicroscopy
164
,
70
77
(
2016
).
14.
R.
Hahn
,
A.
Trimeche
,
C.
Lopez
,
D.
Comparat
, and
Y. J.
Picard
, “
Cesium Rydberg-state ionization study by three-dimensional ion-electron correlation: Toward a monochromatic electron source
,”
Phys. Rev. A
103
(
4
),
042821
(
2021
).
15.
A. J.
Murray
,
M. J.
Hussey
, and
M.
Needham
, “
Design and characterization of an atomic beam source with narrow angular divergence for alkali-earth targets
,”
Meas. Sci. Technol.
17
(
11
),
3094
(
2006
).
16.
M.
Schioppo
,
N.
Poli
,
M.
Prevedelli
,
St.
Falke
,
Ch.
Lisdat
,
U.
Sterr
, and
G. M.
Tino
, “
A compact and efficient strontium oven for laser-cooling experiments
,”
Rev. Sci. Instrum.
83
(
10
),
103101
(
2012
).
17.
C.
Vishwakarma
,
J.
Mangaonkar
,
K.
Patel
,
G.
Verma
,
S.
Sarkar
, and
U. D.
Rapol
, “
A simple atomic beam oven with a metal thermal break
,”
Rev. Sci. Instrum.
90
(
5
),
053106
(
2019
).
18.
B.
Song
,
Y.
Zou
,
S.
Zhang
,
C.-w.
Cho
, and
G.-B.
Jo
, “
A cost-effective high-flux source of cold ytterbium atoms
,”
Appl. Phys. B
122
(
10
),
250
(
2016
).
19.
A.
Majumder
,
B.
Jana
,
P. T.
Kathar
,
A. K.
Das
, and
V. K.
Mago
, “
Generation of a long wedge-shaped barium atomic beam and its density characterization
,”
Vacuum
83
(
6
),
989
995
(
2009
).
20.
W.
Bowden
,
W.
Gunton
,
M.
Semczuk
,
K.
Dare
, and
K. W.
Madison
, “
An adaptable dual species effusive source and Zeeman slower design demonstrated with Rb and Li
,”
Rev. Sci. Instrum.
87
(
4
),
043111
(
2016
).
21.
R. E.
Beehler
,
R. C.
Mockler
, and
J. M.
Richardson
, “
Cesium beam atomic time and frequency standards
,”
Metrologia
1
(
3
),
114
(
1965
).
22.
R.
Lutwak
,
D.
Emmons
,
R. M.
Garvey
, and
P.
Vlitas
, “
Optically pumped cesium-beam frequency standard for GPS-III
,” Technical Report, Datum-Timing Test and Measurement,
Beverly, MA
,
2001
.
23.
H. P. G.
Schieck
,
S.
Lutz
 et al,
Polarized Beams and Polarized Gas Targets
(
World Scientific
,
1996
).
24.
G.
Bansal
,
S.
Bhartiya
,
K.
Pandya
,
M.
Bandyopadhyay
,
M. J.
Singh
,
J.
Soni
,
A.
Gahlaut
,
K. G.
Parmar
, and
A.
Chakraborty
, “
Multiple delivery cesium oven system for negative ion sources
,”
Rev. Sci. Instrum.
83
(
2
),
02B118
(
2012
).
25.
G.
Bansal
,
S.
Mishra
,
K.
Pandya
,
M.
Bandyopadhyay
,
J.
Soni
,
A.
Gahlaut
,
K. G.
Parmar
,
S.
Shah
,
A.
Phukan
,
G.
Roopesh
 et al, “
Proposal of actively heated, long stem based Cs delivery system for diagnostic neutral beam source in ITER
,”
AIP Conf. Proc.
1515
,
207
(
2013
).
26.
B.
Wolf
,
Handbook of Ion Sources
(
CRC Press
,
2017
).
27.
M.
Bacal
,
M.
Sasao
, and
M.
Wada
, “
Negative ion sources
,”
J. Appl. Phys.
129
(
22
),
221101
(
2021
).
28.
F.
Taccogna
,
S.
Bechu
,
A.
Aanesland
,
P.
Agostinetti
,
R.
Agnello
,
S.
Aleiferis
,
T.
Angot
,
V.
Antoni
,
M.
Bacal
,
M.
Barbisan
 et al, “
Latest experimental and theoretical advances in the production of negative ions in caesium-free plasmas
,”
Eur. Phys. J. D
75
(
8
),
227
(
2021
).
29.
U.
Fantz
,
P.
Franzen
, and
D.
Wünderlich
, “
Development of negative hydrogen ion sources for fusion: Experiments and modelling
,”
Chem. Phys.
398
,
7
16
(
2012
).
30.
U.
Fantz
,
D.
Wünderlich
,
B.
Heinemann
,
W.
Kraus
, and
R.
Riedl
, “
Operation of large RF sources for H: Lessons learned at ELISE
,”
AIP Conf. Proc.
1869
,
030004
(
2017
).
31.
M.
Fadone
,
M.
Barbisan
,
S.
Cristofaro
,
M.
De Muri
,
G.
Serianni
, and
E.
Sartori
, “
Interpreting the dynamic equilibrium during evaporation in a cesium environment
,”
Rev. Sci. Instrum.
91
(
1
),
013332
(
2020
).
32.
M.
Bacal
and
M.
Wada
, “
Negative ion source operation with deuterium
,”
Plasma Sources Sci. Technol.
29
(
3
),
033001
(
2020
).
33.
M.
De Muri
,
A.
Rizzolo
,
E.
Sartori
,
S.
Cristofaro
,
M.
Barbisan
,
M.
Fadone
,
D.
Ravarotto
,
R.
Rizzieri
,
R.
Capobianco
,
P.
Cinetto
 et al, “
Spider Cs ovens functional tests
,”
Fusion Eng. Des.
167
,
112331
(
2021
).
34.
J. M.
Guevremont
,
S.
Sheldon
, and
F.
Zaera
, “
Design and characterization of collimated effusive gas beam sources: Effect of source dimensions and backing pressure on total flow and beam profile
,”
Rev. Sci. Instrum.
71
,
3869
3881
(
2000
).
35.
N.
Cooper
,
E.
Da Ros
,
J.
Nute
,
D.
Baldolini
,
P.
Jouve
,
L.
Hackermüller
, and
M.
Langer
, “
Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy
,”
J. Phys. D: Appl. Phys.
51
(
10
),
105602
(
2018
).
36.
I.
Estermann
,
S. N.
Foner
, and
O.
Stern
, “
The mean free paths of cesium atoms in helium, nitrogen, and cesium vapor
,”
Phys. Rev.
71
(
4
),
250
(
1947
).
37.
D. J.
Croucher
and
J. L.
Clark
, “
Total collision cross sections and van der waals constants for alkali atom interactions with atoms and non-reactive diatomic molecules at thermal energies
,”
J. Phys. B: At. Mol. Phys.
2
(
5
),
603
(
1969
).
38.
T.
Ikegami
, “
Angular distribution measurement of cesium atomic beam from long tube collimators
,”
Jpn. J. Appl. Phys.
33
(
8
),
4795
(
1994
).
39.
C. B.
Alcock
,
V. P.
Itkin
, and
M. K.
Horrigan
, “
Vapour pressure equations for the metallic elements: 298–2500 K
,”
Can. Metall. Q.
23
(
3
),
309
313
(
1984
).
40.
A. N.
Nesmeyanov
,
Vapor Pressure of The Chemical Elements
(
Elsevier
,
Amsterdam, London, New York
,
1963
).
41.
M.
Lambropoulos
and
S. E.
Moody
, “
Design of a three-stage alkali beam source
,”
Rev. Sci. Instrum.
48
(
2
),
131
134
(
1977
).
42.
D. H.
Sarkisyan
,
A. S.
Sarkisyan
, and
A. K.
Yalanusyan
, “
Thermal dissociation of cesium dimers
,”
Appl. Phys. B: Lasers Opt.
66
(
2
),
241
(
1998
).
43.
R. E.
Drullinger
,
D. J.
Glaze
, and
D. B.
Sullivan
, “
A recirculating oven for atomic beam frequency standards
,” in
39th Annual Symposium on Frequency Control
(
IEEE
,
1985
), pp.
13
17
.
44.
T.
Lahaye
, “
Refroidissement par évaporation d’un jet atomique guidé magnétiquement
,” Ph.D. thesis,
Université Pierre et Marie Curie-Paris VI
,
2005
.
45.
A.
Pailloux
,
T.
Alpettaz
, and
E.
Lizon
, “
Candlestick oven with a silica wick provides an intense collimated cesium atomic beam
,”
Rev. Sci. Instrum.
78
(
2
),
023102
(
2007
).
46.
J. A.
Giordmaine
and
T. C.
Wang
, “
Molecular beam formation by long parallel tubes
,”
J. Appl. Phys.
31
(
3
),
463
471
(
1960
).
47.
R. M.
Logan
and
R. E.
Stickney
, “
Simple classical model for the scattering of gas atoms from a solid surface
,”
J. Chem. Phys.
44
(
1
),
195
201
(
1966
).
48.
D. A.
King
, “
Thermal desorption from metal surfaces: A review
,”
Surf. Sci.
47
(
1
),
384
402
(
1975
).
49.
T.
Matsushima
, “
Angle-resolved measurements of product desorption and reaction dynamics on individual sites
,”
Surf. Sci. Rep.
52
(
1–2
),
1
62
(
2003
).
50.
D. R.
Olander
, “
Molecular-beam sources fabricated from multichannel arrays. II. Effect of source size and alignment
,”
J. Appl. Phys.
40
(
11
),
4650
4657
(
1969
).
51.
A. Y.
Rumyantsev
,
M. V.
Petrenko
,
S. A.
Poniaev
,
Y. A.
Shustrov
,
V. P.
Kochegarov
, and
D. L.
Schennikov
, “
The influence of interatomic collisions on the angular distribution of Cs atomic flow from microchannel
,”
J. Phys.: Conf. Ser.
929
,
012095
(
2017
).
52.
C.
Lejeune
and
J.
Aubert
, “
Emittance and brightness: Definitions and measurements
,”
Adv. Electron. Electron Phys., Suppl.
13
,
159
(
1980
).
53.
M. J.
Rhee
, “
Refined definition of the beam brightness
,”
Phys. Fluids B
4
(
6
),
1674
1676
(
1992
).
54.
C. A.
Brau
, “
The physics and applications of high brightness electron beam
,” Chapter What brightness means, in
Proceedings of the ICFA Workshop
(
Chia Laguna
,
Sardinia
,
2002
), p.
20
.
55.
S. J.
Buckman
,
R. J.
Gulley
,
M.
Moghbelalhossein
, and
S. J.
Bennett
, “
Spatial profiles of effusive molecular beams and their dependence on gas species
,”
Meas. Sci. Technol.
4
(
10
),
1143
(
1993
).
56.
S. A.
Hopkins
,
K.
Butler
,
A.
Guttridge
,
S.
Kemp
,
R.
Freytag
,
E. A.
Hinds
,
M. R.
Tarbutt
, and
S. L.
Cornish
, “
A versatile dual-species Zeeman slower for caesium and ytterbium
,”
Rev. Sci. Instrum.
87
(
4
),
043109
(
2016
).
57.
S. L.
Kemp
,
K. L.
Butler
,
R.
Freytag
,
S. A.
Hopkins
,
E. A.
Hinds
,
M. R.
Tarbutt
, and
S. L.
Cornish
, “
Production and characterization of a dual species magneto-optical trap of cesium and ytterbium
,”
Rev. Sci. Instrum.
87
(
2
),
023105
(
2016
).
58.
D. P.
Seccombe
,
S. A.
Collins
, and
T. J.
Reddish
, “
The design and performance of an effusive gas source of conical geometry for photoionization studies
,”
Rev. Sci. Instrum.
72
(
6
),
2550
2557
(
2001
).
59.
G. M.
Carter
and
D. E.
Pritchard
,
Rev. Sci. Instrum.
49
120
(
1978
).
60.
L.
Sharma
,
A.
Roy
,
S.
Panja
, and
S.
De
, “
Atomic flux distribution from a low-divergent dark wall oven
,”
Rev. Sci. Instrum.
90
(
5
),
053202
(
2019
).
61.
F. G.
Allen
and
G. W.
Gobeli
, “
High vacuum deposition of cesium
,”
Rev. Sci. Instrum.
34
(
2
),
184
185
(
1963
).
62.
M.
Bacal
,
A.
Truc
,
H. J.
Doucet
,
H.
Lamain
, and
M.
Chrétien
, “
Charge-exchange cell with cesium recycling
,”
Nucl. Instrum. Methods
114
(
2
),
407
409
(
1974
).
63.
M.
Bacal
and
W.
Reichelt
, “
Metal vapor confinement in vacuum
,”
Rev. Sci. Instrum.
45
(
6
),
769
772
(
1974
).
64.
H.
Yasunaga
, “
Calibrated source of atomic cesium beams
,”
Rev. Sci. Instrum.
47
(
6
),
726
729
(
1976
).
65.
R. D.
Swenumson
and
U.
Even
, “
Continuous flow reflux oven as the source of an effusive molecular Cs beam
,”
Rev. Sci. Instrum.
52
(
4
),
559
561
(
1981
).
66.
R.
Geller
,
B.
Jacquot
,
C.
Jacquot
, and
P.
Sermet
, “
Project of a new type of neutral injector based on negative deuterons
,”
Nucl. Instrum. Methods
175
(
2–3
),
261
272
(
1980
).
67.
M.
Bacal
,
H. J.
Doucet
,
G.
Labaune
,
H.
Lamain
,
C.
Jacquot
, and
S.
Verney
, “
Cesium supersonic jet for D- production by double electron capture
,”
Rev. Sci. Instrum.
53
(
2
),
159
167
(
1982
).
68.
W.
Grüebler
and
P. A.
Schmelzbach
, “
Summary for atomic beam sources
,”
AIP Conf. Proc.
117
,
57
62
(
1984
).
69.
E. B.
Hooper
, Jr.
,
O. A.
Anderson
,
T. J.
Orzechowski
, and
P.
Poulsen
, “
Sixty keV D/sup-/beams using double charge-exchange system
,”
California University, Lawrence Livermore Laboratory
,
Livermore, USA
,
1977
.
70.
E. B.
Hooper
, Jr.
,
O. A.
Anderson
,
T.
Orzechowski
, and
P.
Poulsen
, “
High energy negative deuterium beams using double charge-exchange or surface production
,”
California University, Lawrence Livermore Laboratory
,
Livermore, USA
,
1977
.
71.
A.
Athanasiou
and
O. F.
Hagena
, “
Cesium vapor jet target produced with a supersonic nozzle
,”
Rarefied Gas Dynamics
(
Springer
,
1985
), pp.
777
785
.
72.
S. L.
Gilbert
and
C. E.
Wieman
, “
Atomic-beam measurement of parity nonconservation in cesium
,”
Phys. Rev. A
34
(
2
),
792
(
1986
).
73.
G. S.
Tompa
,
J. L.
Lopes
, and
G.
Wohlrab
, “
Compact efficient modular cesium atomic beam oven
,”
Rev. Sci. Instrum.
58
(
8
),
1536
1537
(
1987
).
74.
G.
Baum
,
B.
Granitza
,
S.
Hesse
,
B.
Leuer
,
W.
Raith
,
K.
Rott
,
M.
Tondera
, and
B.
Witthuhn
, “
An optically pumped, highly polarized cesium beam for the study of spin-dependent electron scattering
,”
Z. Phys. D: At., Mol. Clusters
22
(
1
),
431
436
(
1991
).
75.
B. P.
Masterson
,
C.
Tanner
,
H.
Patrick
, and
C. E.
Wieman
, “
High-brightness, high-purity spin-polarized cesium beam
,”
Phys. Rev. A
47
(
3
),
2139
(
1993
).
76.
V.
Gerginov
and
C. E.
Tanner
, “
Fluorescence of a highly collimated atomic cesium beam: Theory and experiment
,”
Opt. Commun.
222
(
1–6
),
17
28
(
2003
).
77.
H. N.
de Freitas
,
M.
Oria
, and
M.
Chevrollier
, “
Spectroscopy of cesium atoms adsorbing and desorbing at a dielectric surface
,”
Appl. Phys. B: Lasers Opt.
75
(
6–7
),
703
709
(
2002
).
78.
G.
Bansal
,
K.
Pandya
,
M.
Bandyopadhyay
,
A.
Chakraborty
,
M. J.
Singh
,
J.
Soni
,
A.
Gahlaut
, and
K. G.
Parmar
, “
Cesium delivery system for negative ion source at IPR
,”
AIP Conf. Proc.
1390
,
614
(
2011
).
79.
H.
Shi
,
J.
Ma
,
X.
Li
,
J.
Liu
, and
S.
Zhang
, “
Design of an atom source collimator for a compact frequency-stabilized laser
,”
Appl. Opt.
57
(
22
),
6620
6625
(
2018
).
80.
R. E.
Drullinger
,
D. J.
Glaze
,
J. L.
Lowe
, and
J. H.
Shirley
, “
The NIST optically pumped cesium frequency standard
,”
IEEE Trans. Instrum. Meas.
40
(
2
),
162
164
(
1991
).
81.
K.
Nakagiri
, “
Beam directivity and efficiency of recirculating oven using cylindrical collimator for cesium beam frequency standard
,”
MeM. School. BOST Kinki Univ.
4
,
46
53
(
1998
).
82.
H.
Melissen
, “
Densest packings of congruent circles in an equilateral triangle
,”
Am. Math. Mon.
100
(
10
),
916
925
(
1993
).
83.
L.
Kime
, “
Production d’une source d’ions césium monocinétique basée sur des atomes refroidis par laser en vue d’un couplage avec une colonne à faisceaux d’ions focalisés
,” Ph D. thesis,
Université Paris Sud - Paris XI
,
2012
.
84.
E. P.
Corsini
,
T.
Karaulanov
,
M.
Balabas
, and
D.
Budker
, “
Hyperfine frequency shift and Zeeman relaxation in alkali-metal-vapor cells with antirelaxation alkene coating
,”
Phys. Rev. A
87
(
2
),
022901
(
2013
).
85.
C. T.
Rettner
,
D. J.
Auerbach
,
J. C.
Tully
, and
A. W.
Kleyn
, “
Chemical dynamics at the gas- surface interface
,”
J. Phys. Chem.
100
(
31
),
13021
13033
(
1996
).
86.
F. O.
Goodman
,
Dynamics of Gas-Surface Scattering
(
Elsevier
,
2012
).
87.
R. I.
Masel
,
Principles of Adsorption and Reaction on Solid Surfaces
(
John Wiley & Sons
,
New York
,
1996
).
88.
H. U.
Borgstedt
and
C. K.
Mathews
,
Applied Chemistry of the Alkali Metals
(
Springer
,
1987
).
89.
H. P.
Bonzel
,
A. M.
Bradshaw
, and
G.
Ertl
,
Physics and Chemistry of Alkali Metal Adsorption, Materials Science Monographs
(
Elsevier
,
1989
).
90.
M.
Fröschle
,
R.
Riedl
,
H.
Falter
,
R.
Gutser
,
U.
Fantz
 et al, “
Recent developments at IPP on evaporation and control of caesium in negative ion sources
,”
Fusion Eng. Des.
84
(
2–6
),
788
792
(
2009
).
91.
G.
Ehrlich
, “
An atomic view of adsorption
,”
Br. J. Appl. Phys.
15
(
4
),
349
364
(
1964
).
92.
T. R.
Bates
and
A. T.
Forrester
, “
Coupled molecular flow and surface diffusion. Application to cesium transport
,”
J. Appl. Phys.
38
(
4
),
1956
1968
(
1967
).
93.
M.
Stephens
,
R.
Rhodes
, and
C.
Wieman
, “
Study of wall coatings for vapor-cell laser traps
,”
J. Appl. Phys.
76
(
6
),
3479
3488
(
1994
).
94.
S.
Kennou
,
S.
Ladas
, and
C.
Papageorgopoulos
, “
The behavior of Cs on MoS2
,”
Surf. Sci.
152-153
,
1213
1221
(
1985
).
95.
M.
Shimizu
,
H.
Hasebe
,
S.
Hongo
,
K.
Ojima
, and
T.
Urano
, “
Study of the electronic and adsorption structure of Cs and H coadsorption on Si (100) 2 × 1
,”
Appl. Surf. Sci.
130-132
,
271
275
(
1998
).
96.
S.
Yoshida
,
M.
Toyoshima
,
T.
Urano
, and
S.
Hongo
, “
Cs adsorption on H-terminated CVD-diamond studied by thermal desorption spectroscopy
,” in
Proceedings of the 7th International Conference on Nanometer-Scale Science and Technology and the 21st European Conference on Surface Science
[
Surf. Sci.
532-535
,
857
861
(
2003
)].
97.
A. K.
Orujov
, “
Driving the diffusion of cesium atoms of graphite monolayers on metal surfaces into rhenium (1010)
,”
J. Mod. Phys.
5
,
375
382
(
2014
).
98.
S.
Brunauer
,
P. H.
Emmett
, and
E.
Teller
, “
Adsorption of gases in multimolecular layers
,”
J. Am. Chem. Soc.
60
(
2
),
309
319
(
1938
).
99.
W. S.
Martins
,
M.
Oriá
,
T.
Passerat de Silans
, and
M.
Chevrollier
, “
Coverage threshold for laser-induced lithography
,”
Appl. Phys. A
123
(
5
),
360
(
2017
).
100.
S.
Heimel
,
Thermodynamic Properties of Cesium up to 1500 K
(
NASA, Washington, D.C.
,
1965
).
101.
R. C. E.
Hamlyn
,
M.
Mahapatra
,
I.
Orozco
,
I.
Waluyo
,
A.
Hunt
,
J. A.
Rodriguez
,
M. G.
White
, and
S. D.
Senanayake
, “
Structure and chemical state of cesium on well-defined Cu (111) and Cu2O/Cu (111) surfaces
,”
J. Phys. Chem. C
124
(
5
),
3107
3121
(
2020
).
102.
H. Y.
Xiao
,
X. T.
Zu
,
Y. F.
Zhang
, and
L.
Yang
, “
First-principles study of the adsorption of cesium on Si (001)(2 × 1) surface
,”
J. Chem. Phys.
122
(
17
),
174704
(
2005
).
103.
S.
Wexler
, “
Deposition of atomic beams
,”
Rev. Mod. Phys.
30
(
2
),
402
(
1958
).
104.
H. M.
Goldenberg
,
D.
Kleppner
, and
N. F.
Ramsey
, “
Atomic beam resonance experiments with stored beams
,”
Phys. Rev.
123
(
2
),
530
(
1961
).
105.
M. A.
Bouchiat
and
J.
Brossel
, “
Relaxation of optically pumped Rb atoms on paraffin-coated walls
,”
Phys. Rev.
147
(
1
),
41
(
1966
).
106.
A. C.
McClung
, “
Photonic crystal waveguides for integration into an atomic physics experiment
,” Ph.D. thesis,
California Institute of Technology
,
2017
.
107.
S.
Woetzel
,
F.
Talkenberg
,
T.
Scholtes
,
R.
Ijsselsteijn
,
V.
Schultze
, and
H.-G.
Meyer
, “
Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings
,”
Surf. Coat. Technol.
221
,
158
162
(
2013
).
108.
M.
Brause
,
D.
Ochs
,
J.
Günster
,
Th.
Mayer
,
B.
Braun
,
V.
Puchin
,
W.
Maus-Friedrichs
, and
V.
Kempter
, “
Cs adsorption on oxide films (Al2O3, MgO, SiO2)
,”
Surf. Sci.
383
(
2–3
),
216
225
(
1997
).
109.
V.
Kempter
and
M.
Brause
,
Metals on Metal Oxides: Study of Adsorption Mechanisms With the Metastable Impact Electron Spectroscopy (MIES)
, (
Springer Netherlands
,
Dordrecht
,
2000
), pp.
249
259
.
110.
T. E.
Madey
,
B. V.
Yakshinskiy
,
V. N.
Ageev
, and
R. E.
Johnson
, “
Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of mercury and the moon
,”
J. Geophys. Res.: Planets
103
(
E3
),
5873
5887
, (
1998
).
111.
V.
Seshan
,
D.
Ullien
,
A.
Castellanos-Gomez
,
S.
Sachdeva
,
D. H. K.
Murthy
,
T. J.
Savenije
,
H. A.
Ahmad
,
T. S.
Nunney
,
S. D.
Janssens
,
K.
Haenen
 et al, “
Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure
,”
J. Chem. Phys.
138
(
23
),
234707
(
2013
).
112.
K.
Kushida
,
T.
Niwano
,
T.
Moriya
,
T.
Shimizu
,
K.
Meguro
,
H.
Nakazawa
, and
A.
Hatakeyama
, “
Relaxation of Cs atomic polarization at surface coatings characterized by x-ray photoelectron spectroscopy
,”
Jpn. J. Appl. Phys.
54
(
6
),
066401
(
2015
).
113.
M. V.
Balabas
and
O. Y.
Tret’yak
, “
Temperature dependence of the kinetics of irreversible escape of cesium atoms from a vapor phase into an antirelaxation coating
,”
Tech. Phys.
57
(
9
),
1257
1265
(
2012
).
114.
H.
Chi
,
W.
Quan
,
J.
Zhang
,
L.
Zhao
, and
J.
Fang
, “
Advances in anti-relaxation coatings of alkali-metal vapor cells
,”
Appl. Surf. Sci.
501
,
143897
(
2020
).
115.
M. A.
Hafiz
,
V.
Maurice
,
R.
Chutani
,
N.
Passilly
,
C.
Gorecki
,
S.
Guérandel
,
E.
de Clercq
, and
R.
Boudot
, “
Characterization of Cs vapor cell coated with octadecyltrichlorosilane using coherent population trapping spectroscopy
,”
J. Appl. Phys.
117
(
18
),
184901
(
2015
).
116.
S. J.
Seltzer
and
M. V.
Romalis
, “
High-temperature alkali vapor cells with antirelaxation surface coatings
,”
J. Appl. Phys.
106
(
11
),
114905
(
2009
).
117.
K. R.
Zavadil
and
J. L.
Ing
, “
Adsorption and desorption studies of cesium on sapphire surfaces
,”
AIP Conf. Proc.
301
,
63
(
1994
).
118.
K. R.
Zavadil
and
L. I.
Judith
, “
Surface structural dependence of cesium adsorption on the α-Al2O3 (0001) surface
,”
AIP Conf. Proc.
324
,
277
282
(
1995
).
119.
J. A.
Rodriguez
,
M.
Kuhn
, and
J.
Hrbek
, “
Interaction of silver, cesium, and zinc with alumina surfaces: Thermal desorption and photoemission studies
,”
J. Phys. Chem.
100
(
46
),
18240
18248
(
1996
).
120.
J. T.
Yates
, Jr.
,
Experimental Innovations in Surface Science
(
Springer
,
New York
,
1998
), Vol. 27, p.
181
.
121.
C. E.
Aalseth
,
R. L.
Brodzinski
,
O. T.
Farmer
,
E. W.
Hoppe
,
T. W.
Hossbach
,
H. S.
Miley
, and
J. H.
Reeves
, “
Ultra-low-background copper production and clean fabrication
,”
AIP Conf. Proc.
785
,
170
(
2005
).
122.
G.
Mulhollan
, “
Common sense copper and Rf guns
,” Technical Report,
Stanford Linear Accelerator Center (SLAC)
,
Menlo Park, CA
,
2005
.
123.
E. W.
Hoppe
,
A.
Seifert
,
C. E.
Aalseth
,
P. P.
Bachelor
,
A. R.
Day
,
D. J.
Edwards
,
T. W.
Hossbach
,
K. E.
Litke
,
J. I.
McIntyre
,
H. S.
Miley
 et al, “
Cleaning and passivation of copper surfaces to remove surface radioactivity and prevent oxide formation
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
579
(
1
),
486
489
(
2007
).
124.
S. H. W.
Wouters
,
G.
ten Haaf
,
P. H. A.
Mutsaers
, and
E. J. D.
Vredenbregt
, “
Design and experimental validation of a compact collimated Knudsen source
,”
Rev. Sci. Instrum.
87
(
8
),
083305
(
2016
).
125.
V. V.
Levdanskii
,
V. I.
Roldugin
,
V. M.
Zhdanov
, and
V.
Zdimal
, “
Free-molecular gas flow in a narrow (nanosize) channel
,”
J. Eng. Phys. Thermophys.
87
(
4
),
802
814
(
2014
).
126.
A.
Hatakeyama
,
M.
Wilde
, and
K.
Fukutani
, “
Classification of light-induced desorption of alkali atoms in glass cells used in atomic physics experiments
,”
E-J. Surf. Sci. Nanotechnol.
4
,
63
68
(
2006
).
127.
P.
Zhang
,
G.
Li
,
Y.-c.
Zhang
,
Y.
Guo
,
J.
Wang
, and
T.
Zhang
, “
Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations
,”
Phys. Rev. A
80
(
5
),
053420
(
2009
).
128.
W. S.
Martins
,
T.
Passerat de Silans
,
M.
Oriá
, and
M.
Chevrollier
, “
Laser-induced atomic adsorption: A mechanism for nanofilm formation
,”
Europhys. Lett.
104
(
3
),
33001
(
2013
).
129.
L.
Torralbo-Campo
,
G. D.
Bruce
,
G.
Smirne
, and
D.
Cassettari
, “
Light-induced atomic desorption in a compact system for ultracold atoms
,”
Sci. Rep.
5
(
1
),
14729
(
2015
).
130.
P.
Soukiassian
, personal communication.
131.
V. V.
Levdansky
,
J.
Smolik
, and
P.
Moravec
, “
Free-molecular gas flow in channels (pores) with physicochemical transformations on the surface
,”
Int. J. Heat Mass Transfer.
49
(
13–14
),
2356
2365
(
2006
).
132.
A.
Scheidemann
and
V.
Kresin
, “
Loading system for alkali metal sources
,”
Rev. Sci. Instrum.
62
(
8
),
2046
2047
(
1991
).
133.
L.
Bewig
,
U.
Buck
,
Ch.
Mehlmann
, and
M.
Winter
, “
Seeded supersonic alkali cluster beam source with refilling system
,”
Rev. Sci. Instrum.
63
(
8
),
3936
3938
(
1992
).
134.
C.
Huang
and
V. V.
Kresin
, “
Note: Contamination-free loading of lithium metal into a nozzle source
,”
Rev. Sci. Instrum.
87
(
6
),
066105
(
2016
).
135.
N. D.
Bhaskar
,
C. M.
Kahla
,
R. P.
Frueholz
, and
R. A.
Cook
, “
Cesium gettering by graphite
,”
Aerospace Corp El Segundo CA Lab Operations
(
1988
).
136.
D. O.
Sabulsky
, “
A Cesium-133 effusive oven for ultracold atomic experiments
,” Ph.D. thesis,
the university of chicago
,
Chicago
,
2014
.
137.
A. L.
Eichenbaum
and
M. E.
Moi
, “
Cesium vapor dispenser
,”
Rev. Sci. Instrum.
35
(
6
),
691
693
(
1964
).
138.
W.
Klein
, “
A molecular beam cesium source for photoemission experiments
,”
Rev. Sci. Instrum.
42
(
7
),
1082
1083
(
1971
).
139.
J.
Yoda
and
Y.
Koga
, “
Spatial profiles of a deflected cesium atomic beam
,”
Jpn. J. Appl. Phys.
21
(
8
),
1244
1245
(
1982
).
140.
R.
Mollenkamp
and
U.
Heinzmann
, “
A source of highly spin-polarised slow electrons based on the [L8S2Q1M6]Fano effect[R8S2Q1M7] on caesium atoms
,”
J. Phys. E: Sci. Instrum.
15
(
6
),
692
(
1982
).
141.
T.
Heindorff
and
B.
Fischer
, “
Velocity analysis of on-axis cesium atoms by the time-of-flight method
,”
Rev. Sci. Instrum.
55
(
3
),
347
353
(
1984
).
142.
A.
Kponou
,
J. G.
Alessi
, and
Th.
Sluyters
,
AGS Polarized H-Source
(
Brookhaven National Laboratory
,
1985
).
143.
M.
Succi
,
R.
Canino
, and
B.
Ferrario
, “
Atomic absorption evaporation flow rate measurements of alkali metal dispensers
,”
Vacuum
35
(
12
),
579
582
(
1985
).
144.
U.
Fantz
,
R.
Gutser
, and
Ch.
Wimmer
, “
Fundamental experiments on evaporation of cesium in ion sources
,”
Rev. Sci. Instrum.
81
(
2
),
02B102
(
2010
).
145.
J. J.
Bernstein
,
S.
Feller
,
A.
Ramm
,
J.
North
,
J.
Maldonis
,
M.
Mescher
,
W.
Robbins
,
R.
Stoner
, and
B.
Timmons
, “
All solid state ion-conducting cesium source for atomic clocks
,”
Solid State Ionics
198
(
1
),
47
49
(
2011
).
146.
U.
Fantz
,
R.
Friedl
, and
M.
Fröschle
, “
Controllable evaporation of cesium from a dispenser oven
,”
Rev. Sci. Instrum.
83
(
12
),
123305
(
2012
).
147.
A.
Rizzolo
,
M.
Pavei
, and
N.
Pomaro
, “
Caesium oven design and R&D for the SPIDER beam source
,”
Fusion Eng. Des.
88
(
6–8
),
1007
1010
(
2013
).
148.
L.
Schiesko
,
G.
Cartry
,
C.
Hopf
,
T.
Höschen
,
G.
Meisl
,
O.
Encke
,
B.
Heinemann
,
K.
Achkasov
,
P.
Amsalem
, and
U.
Fantz
, “
First experiments with cs doped mo as surface converter for negative hydrogen ion sources
,”
J. Appl. Phys.
118
(
7
),
073303
(
2015
).
149.
E.
Sartori
,
M.
Barbisan
,
M.
Fadone
,
S.
Gorno
,
L.
Bizzotto
,
P.
Veltri
,
B.
Laterza
,
R.
Ghiraldelli
,
A.
Rizzolo
,
R.
Pasqualotto
 et al, “
Diagnostics of caesium emission from spider caesium oven prototype
,”
AIP Conf. Proc.
2052
,
040011
(
2018
).
150.
A.
Rizzolo
,
M.
Barbisan
,
L.
Bizzotto
,
R.
Capobianco
,
M.
De Muri
,
M.
Fadone
,
R.
Ghiraldelli
,
S.
Gorno
,
L.
Bruno
,
G.
Marchiori
 et al, “
Characterization of the SPIDER Cs oven prototype in the caesium test stand for the ITER HNB negative ion sources
,”
Fusion Eng. Des.
146
,
676
(
2019
).
151.
S.
Cristofaro
,
M.
Fröschle
,
A.
Mimo
,
A.
Rizzolo
,
M.
De Muri
,
M.
Barbisan
, and
U.
Fantz
, “
Design and comparison of the Cs ovens for the test facilities ELISE and SPIDER
,”
Rev. Sci. Instrum.
90
(
11
),
113504
(
2019
).
You do not currently have access to this content.