We present a self-locking laser system that does not require operator interventions. The system automatically finds a desired atomic transition and subsequently locks to it. Moreover, it has the ability to automatically detect if the laser is out of lock and activate the re-locking process. The design was implemented on two different diode lasers, a distributed Bragg reflector (DBR) diode laser and a Fabry Perot (FP) diode laser, used as a repump laser for a magneto-optical trap in a laser cooling experiment and a Raman laser for a four-level Raman transition experiment, respectively. The design relies on frequency modulation transfer spectroscopy to obtain a sub-Doppler atomic spectrum of rubidium-85. This spectrum is then demodulated to obtain zero-crossing linear slopes at the exact points of each atomic and crossover transition. The frequency modulation, the signal analysis, and the automatic locking and re-locking of the lasers are all implemented using an Arduino Due microcontroller. The lock loop has a bandwidth of 7 kHz. The lasers used for the design are characterized, and the robustness of the lock is analyzed. The achieved linewidths of DBR and FP lasers are 1.4 and 5.5 MHz, respectively. The frequency drifts of both lasers are a few 100 kHz over a course of days. The capture range of the locking system is up to 4.9 GHz for the DBR laser and 725 MHz for the FP laser. Both lasers performed well under actual experimental conditions.

1.
D. J.
McCarron
,
S. A.
King
, and
S. L.
Cornish
, “
Modulation transfer spectroscopy in atomic rubidium
,”
Meas. Sci. Technol.
19
,
105601
(
2008
).
2.
C. S.
Adams
and
E.
Riis
, “
Laser cooling and trapping of neutral atoms
,”
Prog. Quantum Electron.
21
,
1
79
(
1997
).
3.
L.
Zhu
,
Y.-H.
Lien
,
A.
Hinton
,
A.
Niggebaum
,
C.
Rammeloo
,
K.
Bongs
, and
M.
Holynski
, “
Application of optical single-sideband laser in Raman atom interferometry
,”
Opt. Express
26
,
6542
6553
(
2018
).
4.
W.-J.
Xu
,
M.-K.
Zhou
,
M.-M.
Zhao
,
K.
Zhang
, and
Z.-K.
Hu
, “
Quantum tiltmeter with atom interferometry
,”
Phys. Rev. A
96
,
063606
(
2017
).
5.
V.
Ménoret
,
P.
Vermeulen
,
N.
Le Moigne
,
S.
Bonvalot
,
P.
Bouyer
,
A.
Landragin
, and
B.
Desruelle
, “
Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter
,”
Sci. Rep.
8
,
1
11
(
2018
).
6.
P.
Berg
,
S.
Abend
,
G.
Tackmann
,
C.
Schubert
,
E.
Giese
,
W. P.
Schleich
,
F. A.
Narducci
,
W.
Ertmer
, and
E. M.
Rasel
, “
Composite-light-pulse technique for high-precision atom interferometry
,”
Phys. Rev. Lett.
114
,
063002
(
2015
).
7.
D. J.
McCarron
,
I. G.
Hughes
,
P.
Tierney
, and
S. L.
Cornish
, “
A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium
,”
Rev. Sci. Instrum.
78
,
093106
(
2007
).
8.
A.
Millett-Sikking
,
I. G.
Hughes
,
P.
Tierney
, and
S. L.
Cornish
, “
DAVLL lineshapes in atomic rubidium
,”
J. Phys. B: At., Mol. Opt. Phys.
40
,
187
(
2006
).
9.
G.
Jundt
,
G. T.
Purves
,
C. S.
Adams
, and
I. G.
Hughes
, “
Non-linear Sagnac interferometry for pump-probe dispersion spectroscopy
,”
Eur. Phys. J. D
27
,
273
276
(
2003
).
10.
E. A.
Kuzin
,
B.
Ibarra Escamilla
,
D. E.
Garcia-Gomez
, and
J. W.
Haus
, “
Fiber laser mode locked by a Sagnac interferometer with nonlinear polarization rotation
,”
Opt. Lett.
26
,
1559
1561
(
2001
).
11.
C. P.
Pearman
,
C. S.
Adams
,
S. G.
Cox
,
P. F.
Griffin
,
D. A.
Smith
, and
I. G.
Hughes
, “
Polarization spectroscopy of a closed atomic transition: Applications to laser frequency locking
,”
J. Phys. B: At., Mol. Opt. Phys.
35
,
5141
(
2002
).
12.
L.
Dong
,
W.
Yin
,
W.
Ma
, and
S.
Jia
, “
A novel control system for automatically locking a diode laser frequency to a selected gas absorption line
,”
Meas. Sci. Technol.
18
,
1447
(
2007
).
13.
G. J.
Koch
, “
Automatic laser frequency locking to gas absorption lines
,”
Opt. Eng.
42
,
1690
1693
(
2003
).
14.
Y.
Luo
,
H.
Li
,
H.-C.
Yeh
, and
J.
Luo
, “
A self-analyzing double-loop digital controller in laser frequency stabilization for inter-satellite laser ranging
,”
Rev. Sci. Instrum.
86
,
044501
(
2015
).
15.
B. M.
Sparkes
,
H. M.
Chrzanowski
,
D. P.
Parrain
,
B. C.
Buchler
,
P. K.
Lam
, and
T.
Symul
, “
A scalable, self-analyzing digital locking system for use on quantum optics experiments
,”
Rev. Sci. Instrum.
82
,
075113
(
2011
).
16.
K.
Huang
,
H.
Le Jeannic
,
J.
Ruaudel
,
O.
Morin
, and
J.
Laurat
, “
Microcontroller-based locking in optics experiments
,”
Rev. Sci. Instrum.
85
,
123112
(
2014
).
17.
Toptica Photonics
, “
Coherence-advanced regulation method
,”
Toptica
(
2021
) https://www.toptica.com/technology/toptica-proprietary/charm.
18.
Z.
Liu
,
Z.
Hu
,
L.
Qi
, and
T.
Wang
, “
A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA
,” in
AOPC 2015: Advances in Laser Technology and Applications
(
International Society for Optics and Photonics
,
2015
), Vol. 9671, p.
96711B
.
19.
Q.-X.
Li
,
X.
Zhang
,
L.-X.
Zhu
,
S.-H.
Yan
,
A.-A.
Jia
,
Y.-K.
Luo
,
Y.-N.
Wang
,
C.-H.
Wei
,
H.-K.
Zhang
,
M.-J.
Lv
,
G.-C.
Wang
, and
J.
Yang
, “
Intelligent and automatic laser frequency locking system using pattern recognition technology
,”
Opt. Lasers Eng.
126
,
105881
(
2020
).
20.
S.
Subhankar
,
A.
Restelli
,
Y.
Wang
,
S. L.
Rolston
, and
J. V.
Porto
, “
Microcontroller based scanning transfer cavity lock for long-term laser frequency stabilization
,”
Rev. Sci. Instrum.
90
,
043115
(
2019
).
21.
A.
Hinton
,
M.
Perea-Ortiz
,
J.
Winch
,
J.
Briggs
,
S.
Freer
,
D.
Moustoukas
,
S.
Powell-Gill
,
C.
Squire
,
A.
Lamb
,
C.
Rammeloo
,
B.
Stray
,
G.
Voulazeris
,
L.
Zhu
,
A.
Kaushik
,
Y.-H.
Lien
,
A.
Niggebaum
,
A.
Rodgers
,
A.
Stabrawa
,
D.
Boddice
,
S. R.
Plant
,
G. W.
Tuckwell
,
K.
Bongs
,
N.
Metje
, and
M.
Holynski
, “
A portable magneto-optical trap with prospects for atom interferometry in civil engineering
,”
Philos. Trans. R. Soc., A
375
,
20160238
(
2017
).
22.
P.
Udommai
,
M.
Harvey
, and
A. J.
Murray
, “
Digitally controlled laser frequency stabilization for a ring laser using saturated absorption
,”
Rev. Sci. Instrum.
92
,
073004
(
2021
).
23.
A.
O’Dwyer
,
Handbook of PI and PID Controller Tuning Rules
(
World Scientific
,
2009
).
24.
T.
Schuldt
,
M.
Gohlke
,
M.
Oswald
,
J.
Wüst
,
T.
Blomberg
,
K.
Döringshoff
,
A.
Bawamia
,
A.
Wicht
,
M.
Lezius
,
K.
Voss
,
M.
Krutzik
,
S.
Herrmann
,
E.
Kovalchuk
,
A.
Peters
, and
C.
Braxmaier
, “
Optical clock technologies for global navigation satellite systems
,”
GPS Solutions
25
,
1
11
(
2021
).
25.
C.
Deans
,
L.
Marmugi
, and
F.
Renzoni
, “
Active underwater detection with an array of atomic magnetometers
,”
Appl. Opt.
57
,
2346
2351
(
2018
).
26.
S.
Huang
,
T.
Zhu
,
M.
Liu
, and
W.
Huang
, “
Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope
,”
Sci. Rep.
7
,
1
7
(
2017
).
27.
P. D.
McDowall
and
M. F.
Andersen
, “
Acousto-optic modulator based frequency stabilized diode laser system for atom trapping
,”
Rev. Sci. Instrum.
80
,
053101
(
2009
).
28.
NKT Photonics
, “
Analysis of laser frequency stability using beat-note measurement
,”
NKT Photonics
(
2016
) http://www.sevensix.co.jp/wordpress/wp-content/uploads/2017/07/Analysis-of-laser-frequency-stability-using-beat-note-measurement.pdf.
29.
D. A.
Steck
, “
Rubidium 85 D line data
,”
Steck
(
2008
) https://steck.us/alkalidata/rubidium85numbers.pdf.
You do not currently have access to this content.