An in situ stretching instrument combined with low field nuclear magnetic resonance (LF-NMR) was designed and developed, namely, Rheo-Spin NMR. The time resolved stress–strain curve together with the corresponding NMR signal can be simultaneously obtained. The Rheo-Spin NMR contains the functional modules, including (1) the in situ stretching module, (2) the NMR signal acquisition module, and (3) the cavity of the NMR positioning module. The unique ring-like shape of the sample is used to replace the traditional dumbbell sample due to limited space in the NMR probe, and the whole ring-like sample will be deformed during the uniaxial stretching process, which avoids the generation of interference signals from the undeformed sample. The designed stretching assembly made by zirconia ceramics is manufactured to match and stretch the ring-like samples. The strain rate can be tuned within the range of 10−5–10−2 s−1 with the maximum stretching ratio λmax of ∼3.8. The in situ stretching experiments combined with LF-NMR were carried out successfully with natural rubber of different fractions of carbon black. The time-resolved T2 relaxometry was adopted to evaluate segmental relaxation during uniaxial deformation which, for the first time, provides the direct and in situ molecular dynamics information. The Rheo-Spin NMR is promising to provide more in-depth insights into the structure and dynamics evolution of polymer products under real service conditions.

1.
M. H.
Levitt
,
Spin Dynamics: Basics of Nuclear Magnetic Resonance
, 2nd ed. (
John Wiley & Sons, Ltd.
,
2007
).
2.
H.
Schwalbe
,
Angew. Chem., Int. Ed.
56
,
10252
(
2017
).
4.
G.
Guthausen
,
TrAC, Trends Anal. Chem.
83
,
103
(
2016
).
5.
F.
Tang
,
M.
Vasas
,
E.
Hatzakis
, and
A.
Spyros
,
Magnetic Resonance Applications in Food Analysis
, 1st ed. (
Elsevier
,
2019
).
6.
Y.
Garro Linck
,
M. H. M.
Killner
,
E.
Danieli
, and
B.
Blümich
,
Appl. Magn. Reson.
44
,
41
(
2013
).
7.
A.
Adams
,
TrAC, Trends Anal. Chem.
83
,
107
(
2016
).
8.
K.
Cui
,
Z.
Ma
,
N.
Tian
,
F.
Su
,
D.
Liu
, and
L.
Li
,
Chem. Rev.
118
,
1840
(
2018
).
9.
L.
Meng
,
J.
Li
,
K.
Cui
,
X.
Chen
,
Y.
Lin
,
J.
Xu
, and
L.
Li
,
Rev. Sci. Instrum.
84
,
115104
(
2013
).
10.
H.
Chen
,
R.
Li
, and
Y.
Liu
,
Sci. Technol. Nucl. Install.
2020
,
1
.
11.
M.
An
,
Q.
Zhang
,
Y.
Lin
,
D.
Wang
,
W.
Chen
,
L.
Meng
,
P.
Yin
, and
L.
Li
,
Macromolecules
53
,
11153
(
2020
).
12.
X.
Zhang
,
S.
Sun
,
N.
Ning
,
S.
Yan
,
X.
Wu
,
Y.
Lu
, and
L.
Zhang
,
Macromolecules
53
,
3082
(
2020
).
13.
J. Z.
Hu
,
N. R.
Jaegers
,
M. Y.
Hu
, and
K. T.
Mueller
,
J. Phys.: Condens. Matter
30
,
463001
(
2018
).
14.
W.
Zhang
,
S.
Xu
,
X.
Han
, and
X.
Bao
,
Chem. Soc. Rev.
41
,
192
(
2012
).
15.
J.
Kang
,
S.
Yuan
,
Y.-l.
Hong
,
W.
Chen
,
A.
Kamimura
,
A.
Otsubo
, and
T.
Miyoshi
,
ACS Macro Lett.
5
,
65
(
2016
).
16.
A.
Schmidt
,
W. S.
Veeman
,
V. M.
Litvinov
, and
W.
Gabriëlse
,
Macromolecules
31
,
1652
(
1998
).
17.
T. I.
Brox
, “
New methods for studying materials under shear with nuclear magnetic resonance
,”
Ph.D. thesis
(
Victoria University of Wellington
,
2011
).
18.
T. I.
Brox
,
B.
Douglass
,
P.
Galvosas
, and
J. R.
Brown
,
J. Rheol.
60
,
973
(
2016
).
20.
P. T.
Callaghan
,
Encyclopedia of Magnetic Resonance
(
John Wiley & Sons, Ltd.
,
Chichester, UK
,
2007
), pp.
155
168
.
21.
C.
Schmidt
,
Rheo-NMR Spectroscopy
(
Springer
,
The Netherlands
,
2008
).
22.
T.
Kameda
,
M.
Kobayashi
,
J.
Yao
, and
T.
Asakura
,
Polymer
43
,
1447
(
2002
).
23.
D. J.
Schaefer
,
R. J.
Schadt
,
K. H.
Gardner
,
V.
Gabara
,
S. R.
Allen
,
A. D.
English
, and
R. J.
Schadt
,
Macromolecules
28
,
1152
(
1995
).
24.
L. S.
Loo
,
R. E.
Cohen
, and
K. K.
Gleason
,
Science
288
,
116
(
2000
).
25.
V.
Räntzsch
,
M.
Haas
,
M. B.
Özen
,
K. F.
Ratzsch
,
K.
Riazi
,
S.
Kauffmann-Weiss
,
J. K.
Palacios
,
A. J.
Müller
,
I.
Vittorias
,
G.
Guthausen
, and
M.
Wilhelm
,
Polymer
145
,
162
(
2018
).
26.
K.-F.
Ratzsch
,
C.
Friedrich
, and
M.
Wilhelm
,
J. Rheol.
61
,
905
(
2017
).
27.
V.
Räntzsch
,
M. B.
Özen
,
K. F.
Ratzsch
,
E.
Stellamanns
,
M.
Sprung
,
G.
Guthausen
, and
M.
Wilhelm
,
Macromol. Mater. Eng.
304
,
1970004
(
2019
).
28.
S.
Nie
,
K.-F.
Ratzsch
,
S. L.
Grage
,
J.
Keller
,
A. S.
Ulrich
,
J.
Lacayo-Pineda
, and
M.
Wilhelm
,
Macromolecules
54
,
6090
(
2021
).
29.
U.
Böhme
,
K.
Gelfert
, and
U.
Scheler
,
AIP Conf. Proc.
1330
,
109
(
2011
).
30.
R.
Pérez-Aparicio
,
M.
Schiewek
,
J. L.
Valentín
,
H.
Schneider
,
D. R.
Long
,
M.
Saphiannikova
,
P.
Sotta
,
K.
Saalwächter
, and
M.
Ott
,
Macromolecules
46
,
5549
(
2013
).
31.
E. E.
Van Haaften
,
M. C.
Van Turnhout
, and
N. A.
Kurniawan
,
Soft Matter
15
,
3353
(
2019
).
32.
T.
Shazly
,
A.
Rachev
,
S.
Lessner
,
W. S.
Argraves
,
J.
Ferdous
,
B.
Zhou
,
A. M.
Moreira
, and
M.
Sutton
,
Exp. Mech.
55
,
41
(
2015
).
33.
L.
Chen
,
L.
Wu
,
L.
Song
,
Z.
Xia
,
Y.
Lin
,
W.
Chen
, and
L.
Li
,
Nanoscale
12
,
24527
(
2020
).
34.
R.
Bärenwald
,
Y.
Champouret
,
K.
Saalwächter
, and
K.
Schäler
,
J. Phys. Chem. B
116
,
13089
(
2012
).
35.
K.
Saalwächter
,
Rubber Chem. Technol.
85
,
350
(
2012
).
36.
A.
Sallat
,
A.
Das
,
J.
Schaber
,
U.
Scheler
,
E. S.
Bhagavatheswaran
,
K. W.
Stöckelhuber
,
G.
Heinrich
,
B.
Voit
, and
F.
Böhme
,
RSC Adv.
8
,
26793
(
2018
).
37.
B.
Wiesner
,
B.
Kohn
,
M.
Mende
, and
U.
Scheler
,
Polymers
10
,
1231
(
2018
).
38.
A.
Wiesmath
,
C.
Filip
,
D. E.
Demco
, and
B.
Blümich
,
J. Magn. Reson.
154
,
60
(
2002
).
39.
S.
Kariyo
and
S.
Stapf
,
Macromolecules
35
,
9253
(
2002
).
40.
L.
Mullins
and
N. R.
Tobin
,
J. Appl. Polym. Sci.
9
,
2993
(
1965
).
41.
S. Y.
Kim
,
H. W.
Meyer
,
K.
Saalwächter
, and
C. F.
Zukoski
,
Macromolecules
45
,
4225
(
2012
).
42.
Z.
Xia
,
H.
Zhao
,
Y.
Wang
,
Y.
Ma
,
X.
Wang
,
L.
Meng
,
D.
Wang
,
J.
Sheng
, and
W.
Chen
,
Soft Matter
17
,
4195
(
2021
).
43.
R.
Kurz
,
A.
Achilles
,
W.
Chen
,
M.
Schäfer
,
A.
Seidlitz
,
Y.
Golitsyn
,
J.
Kressler
,
W.
Paul
,
G.
Hempel
,
T.
Miyoshi
,
T.
Thurn-Albrecht
, and
K.
Saalwächter
,
Macromolecules
50
,
3890
(
2017
).
44.
H.
Schneider
,
K.
Saalwächter
, and
M.
Roos
,
Macromolecules
50
,
8598
(
2017
).
45.
R.
Kurz
,
M.
Schulz
,
F.
Scheliga
,
Y.
Men
,
A.
Seidlitz
,
T.
Thurn-Albrecht
, and
K.
Saalwächter
,
Macromolecules
51
,
5831
(
2018
).
46.
K.
Saalwächter
,
Prog. Nucl. Magn. Reson. Spectrosc.
51
,
1
(
2007
).
47.
M.
Ott
,
R.
Pérez-Aparicio
,
H.
Schneider
,
P.
Sotta
, and
K.
Saalwächter
,
Macromolecules
47
,
7597
(
2014
).
48.
A.
Naumova
,
D. C.
Agudelo
,
M. A.
Villar
,
D. A.
Vega
,
J. L.
Valentin
, and
K.
Saalwächter
,
Macromolecules
52
,
5042
(
2019
).
49.
B.
Huneau
,
Rubber Chem. Technol.
84
,
425
(
2011
).
You do not currently have access to this content.