New approaches for lifetime determination using data from recoil distance Doppler-shift experiments are presented based on the fundamental properties of the functions describing the time evolution of the population of excited nuclear states. To some extent, one of them represents a contraction of the well-known Differential decay-curve method (DDCM) by using the most reliable data point [the maximum of the ni(t) function describing the population of level i in time] and a purely numerical procedure avoiding any fitting of decay curves. The combination with the standard DDCM analysis is promising for improving the reliability and the precision of the results for the lifetimes obtained. The novel part of the approach consists of using a chain of equations at the consecutive maxima of the ni(t) functions, which allow us to precisely determine the ratio of the lifetimes of two consecutive levels and, in the case where one of these lifetimes is known, to determine the unknown one. In addition, a simple integral derivation of the lifetime is presented involving the peak areas measured at different distances, and an application of the first moments (expectation values and centroids in time) of the ni(t) functions for determining lifetimes is also demonstrated to be useful.

1.
T. K.
Alexander
and
J. S.
Forster
, in
Advances in Nuclear Physics
, edited by
M.
Baranger
and
E.
Vogt
(
Plenum Press
,
1978
), Vol. 10, p.
197
.
2.
P. J.
Nolan
and
J. F.
Sharpey-Schafer
,
Rep. Prog. Phys.
42
,
1
(
1979
).
3.
K. P.
Lieb
, in
Experimental Techniques in Nuclear Physics
, edited by
D. N.
Poenaru
and
W.
Greiner
(
Walter de Gruyter
,
Berlin; New York
,
1997
), p.
425
4.
A.
Dewald
,
S.
Harissopulos
, and
P.
Brentano
,
Z. Phys. A
334
,
163
(
1989
).
5.
G.
Böhm
,
A.
Dewald
,
P.
Petkov
, and
P.
von Brentano
,
Nucl. Instrum. Methods Phys. Res., Sect. A
329
,
248
(
1993
).
6.
P.
Petkov
,
D.
Tonev
,
J.
Gableske
,
A.
Dewald
,
T.
Klemme
, and
P.
von Brentano
,
Nucl. Instrum. Methods Phys. Res., Sect. A
431
,
208
(
1999
).
7.
A.
Dewald
,
O.
Möller
, and
P.
Petkov
,
Prog. Part. Nucl. Phys.
67
,
786
(
2012
).
8.
E.
Segre
,
Nuclei and Particles
(
W. A. Benjamin, Inc.
,
New York
,
1965
), p.
157
.
9.
O.
Möller
,
A.
Dewald
,
P.
Petkov
,
B.
Saha
,
A.
Fitzler
,
K.
Jessen
,
D.
Tonev
,
T.
Klug
,
S.
Heinze
,
J.
Jolie
,
P.
von Brentano
,
D.
Bazzacco
,
C. A.
Ur
,
E.
Farnea
,
M.
Axiotis
,
S.
Lunardi
,
G.
de Angelis
,
D. R.
Napoli
,
N.
Marginean
,
T.
Martinez
,
M. A.
Caprio
, and
R. F.
Casten
,
Phys. Rev. C
74
,
024313
(
2006
).
10.
A.
Dewald
,
P.
Sala
,
R.
Wrzal
,
G.
Böhm
,
D.
Lieberz
,
G.
Siems
,
R.
Wirowski
,
K. O.
Zeil
,
A.
Gelberg
,
P.
von Brentano
,
P.
Nolan
,
A. J.
Kirwan
,
P. J.
Bishop
,
R.
Julin
,
A.
Lampinen
, and
J.
Hattula
,
Nucl. Phys. A
545
,
822
(
1992
).
11.
D.
Bazzacco
, in
Proceedings of International Conference on Nuclear Structure at High Angular Momentum
(
Atomic Energy of Canada Ltd.
,
Ottawa
,
1992
), p.
386
, Chalk River Report No. AECL 10613.
12.
C. W.
Reich
,
Nucl. Data Sheets
113
,
2537
(
2012
).
13.
J.
Litzinger
, Ph.D. dissertation (
University of Cologne
,
2018
).
15.
K. E. G.
Löbner
, in
The Electromagnetic Interaction in Nuclear Spectroscopy
, edited by
W. D.
Hamilton
(
North-Holland
,
New York
,
1975
), p.
173
.
16.
H.
Mach
,
R. L.
Gill
, and
M.
Moszyński
,
Nucl. Instrum. Methods Phys. Res., Sect. A
280
,
49
(
1989
).
17.
J.-M.
Régis
 et al,
Nucl. Instrum. Methods Phys. Res., Sect. A
622
,
83
(
2010
).
18.
W. M.
Currie
,
Nucl. Instrum. Methods
73
,
173
(
1969
).
You do not currently have access to this content.