We report here the realization and commissioning of an experiment dedicated to the study of the optical properties of light–matter hybrids constituted of crystalline samples embedded in an optical cavity. The experimental assembly developed offers the unique opportunity to study the weak and strong coupling regimes between a tunable optical cavity in cryogenic environment and low energy degrees of freedom, such as phonons, magnons, or charge fluctuations. We describe here the setup developed that allows for the positioning of crystalline samples in an optical cavity of different quality factors, the tuning of the cavity length at cryogenic temperatures, and its optical characterization with a broadband time domain THz spectrometer (0.2–6 THz). We demonstrate the versatility of the setup by studying the vibrational strong coupling in CuGeO3 single crystal at cryogenic temperatures.

1.
E. M.
Purcell
,
R. V.
Pound
, and
N.
Bloembergen
, “
Nuclear magnetic resonance absorption in hydrogen gas
,”
Phys. Rev.
70
,
986
(
1946
).
2.
P.
Goy
,
J. M.
Raimond
,
M.
Gross
, and
S.
Haroche
, “
Observation of cavity-enhanced single-atom spontaneous emission
,”
Phys. Rev. Lett.
50
,
1903
1906
(
1983
).
3.
D.
Kleppner
, “
Inhibited spontaneous emission
,”
Phys. Rev. Lett.
47
,
233
236
(
1981
).
4.
R. G.
Hulet
,
E. S.
Hilfer
, and
D.
Kleppner
, “
Inhibited spontaneous emission by a Rydberg atom
,”
Phys. Rev. Lett.
55
,
2137
2140
(
1985
).
5.
T. W.
Ebbesen
, “
Hybrid light–matter states in a molecular and material science perspective
,”
Acc. Chem. Res.
49
,
2403
2412
(
2016
).
6.
A. F.
Kochum
,
A.
Miranowicz
,
S.
De Liberato
,
S.
Savasta
, and
F.
Nori
, “
Ultrastrong coupling between light and matter
,”
Nat. Rev. Phys.
1
,
19
40
(
2019
).
7.
M. G.
Raizen
,
R. J.
Thompson
,
R. J.
Brecha
,
H. J.
Kimble
, and
H. J.
Carmichael
, “
Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity
,”
Phys. Rev. Lett.
63
,
240
243
(
1989
).
8.
R. J.
Thompson
,
G.
Rempe
, and
H. J.
Kimble
, “
Observation of normal-node splitting for an atom in an optical cavity
,”
Phys. Rev. Lett.
68
,
1132
1135
(
1992
).
9.
D. I.
Schuster
,
L. S.
Bishop
,
I. I.
Chuang
,
D.
DeMille
, and
R. J.
Schoelkopf
, “
Cavity QED in a molecular ion trap
,”
Phys. Rev. A
83
,
012311
(
2011
).
10.
C.
Weisbuch
,
M.
Nishioka
,
A.
Ishikawa
, and
Y.
Arakawa
, “
Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity
,”
Phys. Rev. Lett.
69
,
3314
3317
(
1992
).
11.
G.
Khitrova
,
H. M.
Gibbs
,
M.
Kira
,
S. W.
Koch
, and
A.
Scherer
, “
Vacuum Rabi splitting in semiconductors
,”
Nat. Phys.
2
,
81
90
(
2006
).
12.
V. M.
Agranovich
,
M.
Litinskaia
, and
D. G.
Lidzey
, “
Cavity polaritons in microcavities containing disordered organic semiconductors
,”
Phys. Rev. B
67
,
085311
(
2003
).
13.
D. J.
Shelton
,
I.
Brener
,
J. C.
Ginn
,
M. B.
Sinclair
,
D. W.
Peters
,
K. R.
Coffey
, and
G. D.
Boreman
, “
Strong coupling between nanoscale metamaterials and phonons
,”
Nano Lett.
11
,
2104
2108
(
2011
).
14.
X.
Jin
,
A.
Cerea
,
G. C.
Messina
,
A.
Rovere
,
R.
Piccoli
,
F.
De Donato
,
F.
Palazon
,
A.
Perucchi
,
P.
Di Pietro
,
R.
Morandotti
,
S.
Lupi
,
F.
De Angelis
,
M.
Prato
,
A.
Toma
, and
L.
Razzari
, “
Reshaping the phonon energy landscape of nanocrystals inside a terahertz plasmonic nanocavity
,”
Nat. Commun.
9
,
763
(
2018
).
15.
R.
Damari
,
O.
Weinberg
,
D.
Krotkov
,
N.
Demina
,
K.
Akulov
,
A.
Golombek
,
T.
Schwartz
, and
S.
Fleischer
, “
Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies
,”
Nat. Commun.
10
,
3248
(
2019
).
16.
I. J.
Luxmoore
,
C. H.
Gan
,
P. Q.
Liu
,
F.
Valmorra
,
P.
Li
,
J.
Faist
, and
G. R.
Nash
, “
Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide
,”
ACS Photonics
1
,
1151
1155
(
2014
).
17.
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
J. A.
Hutchison
,
A.
Shalabney
,
V. Y.
Torbeev
, and
T. W.
Ebbesen
, “
Quantum strong coupling with protein vibrational modes
,”
J. Phys. Chem. Lett.
7
,
4159
4164
(
2016
).
18.
J.
George
,
A.
Shalabney
,
J. A.
Hutchison
,
C.
Genet
, and
T. W.
Ebbesen
, “
Liquid-phase vibrational strong coupling
,”
J. Phys. Chem. Lett.
6
,
1027
1031
(
2015
).
19.
A.
Bylinkin
,
M.
Schnell
,
M.
Autore
,
F.
Calavalle
,
P.
Li
,
J.
Taboada-Gutièrrez
,
S.
Liu
,
J. H.
Edgar
,
F.
Casanova
,
L. E.
Hueso
,
P.
Alonso-Gonzalez
,
A. Y.
Nikitin
, and
R.
Hillenbrand
, “
Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules
,”
Nat. Photonics
15
,
197
202
(
2021
).
20.
J.
del Pino
,
J.
Feist
, and
F. J.
Garcia-Vidal
, “
Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode
,”
New J. Phys.
17
,
053040
(
2015
).
21.
P.
Sivarajah
,
A.
Steinbacher
,
B.
Dastrup
,
J.
Lu
,
M.
Xiang
,
W.
Ren
,
S.
Kamba
,
S.
Cao
, and
K. A.
Nelson
, “
THz-frequency magnon-phonon polaritons in the collective strong coupling regime
,”
J. Appl. Phys.
125
,
213103
(
2019
).
22.
A.
Thomas
,
J.
George
,
A.
Shalabney
,
M.
Dryzhakov
,
S. J.
Varma
,
J.
Moran
,
T.
Chervy
,
X.
Zhong
,
E.
Devaux
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
, “
Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field
,”
Angew. Chem., Int. Ed.
55
,
11462
11466
(
2016
).
23.
S.
Kéna-Cohen
and
J.
Yuen-Zhou
, “
Polariton chemistry: Action in the dark
,”
ACS Cent. Sci.
5
,
386
388
(
2019
).
24.
S. J.
DeCamp
,
G. S.
Redner
,
A.
Baskaran
,
M. F.
Hagan
, and
Z.
Dogic
, “
Orientational order of motile defects in active nematics
,”
Nat. Mater.
14
,
1110
1115
(
2015
).
25.
J.
Galego
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Cavity-induced modifications of molecular structure in the strong-coupling regime
,”
Phys. Rev. X
5
,
041022
(
2015
).
26.
G. L.
Paravicini-Bagliani
,
F.
Appugliese
,
E.
Richter
,
F.
Valmorra
,
J.
Keller
,
M.
Beck
,
N.
Bartolo
,
C.
Rössler
,
T.
Ihn
,
K.
Ensslin
,
C.
Ciuti
,
G.
Scalari
, and
J.
Faist
, “
Magneto-transport controlled by Landau polariton states
,”
Nat. Phys.
15
,
186
190
(
2019
).
27.
J.
Schachenmayer
,
C.
Genes
,
E.
Tignone
, and
G.
Pupillo
, “
Cavity-enhanced transport of excitons
,”
Phys. Rev. Lett.
114
,
196403
(
2015
).
28.
D.
Hagenmüller
,
J.
Schachenmayer
,
S.
Schütz
,
C.
Genes
, and
G.
Pupillo
, “
Cavity-enhanced transport of charge
,”
Phys. Rev. Lett.
119
,
223601
(
2017
).
29.
J.
Feist
and
F. J.
Garcia-Vidal
, “
Extraordinary exciton conductance induced by strong coupling
,”
Phys. Rev. Lett.
114
,
196402
(
2015
).
30.
A.
Dreyhaupt
,
S.
Winnerl
,
T.
Dekorsky
, and
M.
Helm
, “
High-intensity terahertz radiation from a microstructured large-area photoconductor
,”
Appl. Phys. Lett.
86
,
121114
(
2005
).
31.
G.
Matthäus
,
S.
Nolte
,
R.
Homuth
,
M.
Voitsch
,
W.
Richter
,
B.
Pradarutti
,
S.
Riehemann
,
G.
Notni
, and
A.
Tünnermann
, “
Microlens coupled interdigital photoconductive switch
,”
Appl. Phys. Lett.
93
,
091110
(
2008
).
32.
M.
Beck
,
H.
Schäfer
,
G.
Klatt
,
J.
Demsar
,
S.
Winnerl
,
M.
Helm
, and
T.
Dekorsy
, “
Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna
,”
Opt. Express
18
,
9251
9257
(
2010
).
33.
A.
Singh
,
J.
Li
,
A.
Pashkin
,
R.
Rana
,
S.
Winnerl
,
M.
Helm
, and
H.
Schneider
, “
High-field THz pulses from a GaAs photoconductive emitter for non-linear THz studies
,”
Opt. Express
29
,
19920
19927
(
2021
).
34.
Q.
Wu
and
X. C.
Zhang
, “
Free-space electro-optic sampling of terahertz beams
,”
Appl. Phys. Lett.
67
,
3523
(
1995
).
35.
A.
Nahata
,
A. S.
Weling
, and
T. F.
Heinz
, “
A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling
,”
Appl. Phys. Lett.
69
,
2321
(
1996
).
36.
H.
Völlenke
,
A.
Wittmann
, and
H.
Nowotny
,
Monatsch. Chem.
98
,
1352
(
1967
).
37.
M.
Hase
, “
Spin-Peierls transition in CuGeO3
,”
Physica B
237–238
,
123
126
(
1997
).
38.
A.
Damascelli
,
D.
van der Marel
,
G.
Dhalenne
, and
A.
Revcolevschi
, “
Optical spectroscopy of pure and doped CuGeO3
,”
Phys. Rev. B
61
,
12063
(
2000
).
39.
A.
Damascelli
,
D.
van der Marel
,
F.
Parmigiani
,
G.
Dhalenne
, and
A.
Revcolevschi
, “
Infrared signatures of the spin-Peierls transition in CuGeO3
,”
Phys. Rev. B
56
,
R11373(R)
(
1997
).
40.
M.
Braden
,
E.
Ressouche
,
B.
Büchner
,
R.
Keßler
,
G.
Heger
,
G.
Dhalenne
, and
A.
Revcolevschi
, “
Anharmonic structural behavior in CuGeO3
,”
Phys. Rev. B
57
,
11497
(
1998
).
41.
H.
Kuroe
,
T.
Sekine
,
M.
Hase
,
Y.
Sasago
,
K.
Uchinokura
,
H.
Kojima
,
I.
Tanaka
, and
Y.
Shibuya
, “
Raman-scattering study of CuGeO3 in the spin-Peierls phase
,”
Phys. Rev. B
50
,
16468
(
1994
).
42.
F.
Schlawin
,
A.
Cavalleri
, and
D.
Jaksch
, “
Cavity-mediated electron-photon superconductivity
,”
Phys. Rev. Lett.
122
,
133602
(
2019
).
43.
J. B.
Curtis
,
Z. M.
Raines
,
A. A.
Allocca
,
M.
Hafezi
, and
V. M.
Galitski
, “
Cavity quantum Eliasberg enhancement of superconductivity
,”
Phys. Rev. Lett.
122
,
167002
(
2019
).
44.
A.
Thomas
,
E.
Devaux
,
K.
Nagarajan
,
G.
Rogez
,
M.
Seidel
,
F.
Richard
,
C.
Genet
,
M.
Drillon
, and
T. W.
Ebbesen
, “
Large enhancement of ferromagnetism under a collective strong coupling of YBCO nanoparticles
,”
Nano Lett.
21
,
4365
4370
(
2021
).
45.
Y.
Ashida
,
A.
Imamoglu
,
J.
Faist
,
D.
Jaksch
,
A.
Cavalleri
, and
E.
Demler
, “
Quantum electrodynamic of matter: Cavity-enhanced ferroelectric phase transition
,”
Phys. Rev. X
10
,
041027
(
2020
).
46.
K.
Nagarajan
,
J.
George
,
A.
Thomas
,
E.
Devaux
,
T.
Chervy
,
S.
Azzini
,
K.
Joseph
,
A.
Jouaiti
,
M. W.
Hosseini
,
A.
Kumar
,
C.
Genet
,
N.
Bartolo
,
C.
Ciuti
, and
T. W.
Ebbesen
, “
Conductivity and photoconductivity of a p-type organic semiconductor under ultrastrong coupling
,”
ACS Nano
14
,
10219
10225
(
2020
).
You do not currently have access to this content.