We develop a polarization characterization platform for optical devices in free-space quantum communications. We demonstrate an imaging polarimeter, which analyzes both incident polarization states and the angle of incidence, attached to a six-axis collaborative robot arm, enabling polarization characterization at any position and direction with consistent precision. We present a detailed description of each subsystem, including the calibration and polarization-test procedure, and analyze polarization measurement errors caused by imperfect orientations of the robot arm using a Mueller-matrix model of polarimeters at tilt incidence. We perform a proof-of-principle experiment for an angle-dependent polarization test for a commercial silver-coated mirror for which the polarization states of the reflected light can be accurately calculated. Quantitative agreement between the theory and experiment validates our methodology. We demonstrate the polarization test for a 20.3 cm lens designed for a quantum optical transmitter in Canada’s Quantum Encryption and Science Satellite mission.

1.
J.-Y.
Wang
,
B.
Yang
,
S.-K.
Liao
,
L.
Zhang
,
Q.
Shen
,
X.-F.
Hu
,
J.-C.
Wu
,
S.-J.
Yang
,
H.
Jiang
,
Y.-L.
Tang
,
B.
Zhong
,
H.
Liang
,
W.-Y.
Liu
,
Y.-H.
Hu
,
Y.-M.
Huang
,
B.
Qi
,
J.-G.
Ren
,
G.-S.
Pan
,
J.
Yin
,
J.-J.
Jia
,
Y.-A.
Chen
,
K.
Chen
,
C.-Z.
Peng
, and
J.-W.
Pan
, “
Direct and full-scale experimental verifications towards ground–satellite quantum key distribution
,”
Nat. Photonics
7
,
387
393
(
2013
).
2.
J.-P.
Bourgoin
,
B. L.
Higgins
,
N.
Gigov
,
C.
Holloway
,
C. J.
Pugh
,
S.
Kaiser
,
M.
Cranmer
, and
T.
Jennewein
, “
Free-space quantum key distribution to a moving receiver
,”
Opt. Express
23
,
33437
33447
(
2015
).
3.
C. J.
Pugh
,
S.
Kaiser
,
J.-P.
Bourgoin
,
J.
Jin
,
N.
Sultana
,
S.
Agne
,
E.
Anisimova
,
V.
Makarov
,
E.
Choi
,
B. L.
Higgins
, and
T.
Jennewein
, “
Airborne demonstration of a quantum key distribution receiver payload
,”
Quantum Sci. Technol.
2
,
024009
(
2017
).
4.
S.
Nauerth
,
F.
Moll
,
M.
Rau
,
C.
Fuchs
,
J.
Horwath
,
S.
Frick
, and
H.
Weinfurter
, “
Air-to-ground quantum communication
,”
Nat. Photonics
7
,
382
386
(
2013
).
5.
H.-Y.
Liu
,
X.-H.
Tian
,
C.
Gu
,
P.
Fan
,
X.
Ni
,
R.
Yang
,
J.-N.
Zhang
,
M.
Hu
,
J.
Guo
,
X.
Cao
,
X.
Hu
,
G.
Zhao
,
Y.-Q.
Lu
,
Y.-X.
Gong
,
Z.
Xie
, and
S.-N.
Zhu
, “
Drone-based entanglement distribution towards mobile quantum networks
,”
Natl. Sci. Rev.
7
,
921
928
(
2020
).
6.
S.-K.
Liao
,
W.-Q.
Cai
,
W.-Y.
Liu
,
L.
Zhang
,
Y.
Li
,
J.-G.
Ren
,
J.
Yin
,
Q.
Shen
,
Y.
Cao
,
Z.-P.
Li
,
F.-Z.
Li
,
X.-W.
Chen
,
L.-H.
Sun
,
J.-J.
Jia
,
J.-C.
Wu
,
X.-J.
Jiang
,
J.-F.
Wang
,
Y.-M.
Huang
,
Q.
Wang
,
Y.-L.
Zhou
,
L.
Deng
,
T.
Xi
,
L.
Ma
,
T.
Hu
,
Q.
Zhang
,
Y.-A.
Chen
,
N.-L.
Liu
,
X.-B.
Wang
,
Z.-C.
Zhu
,
C.-Y.
Lu
,
R.
Shu
,
C.-Z.
Peng
,
J.-Y.
Wang
, and
J.-W.
Pan
, “
Satellite-to-ground quantum key distribution
,”
Nature
549
,
43
47
(
2017
).
7.
J.
Yin
,
Y.
Cao
,
Y.-H.
Li
,
J.-G.
Ren
,
S.-K.
Liao
,
L.
Zhang
,
W.-Q.
Cai
,
W.-Y.
Liu
,
B.
Li
,
H.
Dai
,
M.
Li
,
Y.-M.
Huang
,
L.
Deng
,
L.
Li
,
Q.
Zhang
,
N.-L.
Liu
,
Y.-A.
Chen
,
C.-Y.
Lu
,
R.
Shu
,
C.-Z.
Peng
,
J.-Y.
Wang
, and
J.-W.
Pan
, “
Satellite-to-ground entanglement-based quantum key distribution
,”
Phys. Rev. Lett.
119
,
200501
(
2017
).
8.
J.
Yin
,
Y.-H.
Li
,
S.-K.
Liao
,
M.
Yang
,
Y.
Cao
,
L.
Zhang
,
J.-G.
Ren
,
W.-Q.
Cai
,
W.-Y.
Liu
,
S.-L.
Li
,
R.
Shu
,
Y.-M.
Huang
,
L.
Deng
,
L.
Li
,
Q.
Zhang
,
N.-L.
Liu
,
Y.-A.
Chen
,
C.-Y.
Lu
,
X.-B.
Wang
,
F.
Xu
,
J.-Y.
Wang
,
C.-Z.
Peng
,
A. K.
Ekert
, and
J.-W.
Pan
, “
Entanglement-based secure quantum cryptography over 1120 kilometres
,”
Nature
582
,
501
505
(
2020
).
9.
R.
Bedington
,
J. M.
Arrazola
, and
A.
Ling
, “
Progress in satellite quantum key distribution
,”
npj Quantum Inf.
3
,
30
(
2017
).
10.
J. S.
Sidhu
,
S. K.
Joshi
,
M.
Gundogan
,
T.
Brougham
,
D.
Lowndes
,
L.
Mazzarella
,
M.
Krutzik
,
S.
Mohapatra
,
D.
Dequal
,
G.
Vallone
,
P.
Villoresi
,
A.
Ling
,
T.
Jennewein
,
M.
Mohageg
,
J.
Rarity
,
I.
Fuentes
,
S.
Pirandola
, and
D. K. L.
Oi
, “
Advances in space quantum communications
,”
IET Quantum Commun.
2
,
182
(
2021
); arXiv:2103.12749 [quant-ph].
11.
T.
Jennewein
, “
Towards quantum communications with satellites
,” in
2018 IEEE Photonics Society Summer Topical Meeting Series (SUM)
(
IEEE
,
2018
), pp.
217
218
.
12.
H.
Podmore
,
I.
D’Souza
,
D.
Hudson
,
T.
Jennewin
,
J.
Cain
,
B.
Higgins
,
C.
Midwinter
,
A.
Scott
,
A.
McColgan
,
D.
Caldwell
, and
S. H.
Zheng
, “
Optical terminal for Canada’s quantum encryption and science satellite (QEYSSat)
,” in
2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS)
(
IEEE
,
2019
), pp.
1
5
.
13.
H.
Podmore
,
I.
D’Souza
,
J.
Cain
,
T.
Jennewein
,
B. L.
Higgins
,
Y. S.
Lee
,
A.
Koujelev
,
D.
Hudson
, and
A.
McColgan
, “
QKD terminal for Canada’s quantum encryption and science satellite (QEYSSat)
,”
Proc. SPIE
11852
,
118520H
(
2021
).
14.
J.
Wu
,
Z.
He
,
L.
Zhang
,
L.
Yuan
,
T.
Wang
,
J.
Jia
,
R.
Shu
, and
J.
Wang
, “
Polarization study about a telescope-based transmitter for quantum communication
,”
Appl. Opt.
56
,
8501
8506
(
2017
).
15.
X.
Han
,
H.-L.
Yong
,
P.
Xu
,
K.-X.
Yang
,
S.-L.
Li
,
W.-Y.
Wang
,
H.-J.
Xue
,
F.-Z.
Li
,
J.-G.
Ren
,
C.-Z.
Peng
, and
J.-W.
Pan
, “
Polarization design for ground-to-satellite quantum entanglement distribution
,”
Opt. Express
28
,
369
378
(
2020
).
16.
J.
Wu
,
L.
Zhang
,
J.
Jia
,
T.
Wang
,
R.
Shu
,
Z.
He
, and
J.
Wang
, “
Polarization-maintaining design for satellite-based quantum communication terminals
,”
Opt. Express
28
,
10746
10759
(
2020
).
17.
K.
Sankarasubramanian
,
J. P. A.
Samson
, and
P.
Venkatakrishnan
, “
Measurement of instrumental polarisation of the Kodaikanal tunnel tower telescope
,”
Sol. Polariz.
243
,
313
320
(
1999
).
18.
Z. Q.
Sun
,
Z. F.
Wu
, and
Y. S.
Zhao
, “
Semi-automatic laboratory goniospectrometer system for performing multi-angular reflectance and polarization measurements for natural surfaces
,”
Rev. Sci. Instrum.
85
,
014503
(
2014
).
19.
H.
Gu
,
X.
Chen
,
C.
Zhang
,
H.
Jiang
, and
S.
Liu
, “
Study of the retardance of a birefringent waveplate at tilt incidence by Mueller matrix ellipsometer
,”
J. Opt.
20
,
015401
(
2018
).
20.
J. S.
Almeida
,
V. M.
Pillet
, and
A. D.
Wittmann
, “
The instrumental polarization of a Gregory-Coudé telescope
,”
Sol. Phys.
134
,
1
13
(
1991
).
21.
J.
Kiyohara
,
S.
Ueno
,
R.
Kitai
,
H.
Kurokawa
,
M.
Makita
, and
K.
Ichimoto
, “
Calibration of the instrumental polarization of the domeless solar telescope at the Hida observatory
,”
Proc. SPIE
5492
,
1778
1785
(
2004
).
22.
C.
Beck
,
R.
Schlichenmaier
,
M.
Collados
,
L. B.
Rubio
, and
T.
Kentischer
, “
A polarization model for the German vacuum tower telescope from in situ and laboratory measurements
,”
Astron. Astrophys.
443
,
1047
1053
(
2005
).
23.
K.
Ichimoto
,
B.
Lites
,
D.
Elmore
,
Y.
Suematsu
,
S.
Tsuneta
,
Y.
Katsukawa
,
T.
Shimizu
,
R.
Shine
,
T.
Tarbell
,
A.
Title
,
J.
Kiyohara
,
K.
Shinoda
,
G.
Card
,
A.
Lecinski
,
K.
Streander
,
M.
Nakagiri
,
M.
Miyashita
,
M.
Noguchi
,
C.
Hoffmann
, and
T.
Cruz
, “
Polarization calibration of the solar optical telescope onboard Hinode
,” in
The Hinode Mission
(
Springer
,
New York
,
2008
), pp.
179
207
.
24.

To perform full process tomography, such as to establish Mueller matrices, one could straightforwardly incorporate additional circularly polarized incident states.

25.
B. F.
Alexander
and
K. C.
Ng
, “
Elimination of systematic error in subpixel accuracy centroid estimation
[also Letter 34(11), 3347–3348 (1995)],”
Opt. Eng.
30
,
1320
1331
(
1991
).
26.
M. C.
Simon
, “
Wollaston prism with large split angle
,”
Appl. Opt.
25
,
369
376
(
1986
).
27.
B.
Boulbry
,
J. C.
Ramella-Roman
, and
T. A.
Germer
, “
Improved method for calibrating a Stokes polarimeter
,”
Appl. Opt.
46
,
8533
8541
(
2007
).
28.
Y. S.
Lee
,
K.
Mohammadi
, and
T.
Jennewein
, “
Characterization of optical aberrations with scanning pentaprism for large collimators
,” (unpublished) (
2021
).
29.
W.
Weinstein
, “
Computations in thin film optics
,”
Vacuum
4
,
3
19
(
1954
).
30.
J. A.
Dobrowolski
, “
Optical properties of films and coatings
,” in
Handbook of Optics I
(
McGraw-Hill, Inc.
,
1995
), pp.
42.3
42.130
.
31.
J.-P.
Bourgoin
,
E.
Meyer-Scott
,
B. L.
Higgins
,
B.
Helou
,
C.
Erven
,
H.
Hübel
,
R.
Laflamme
,
T.
Jennewein
,
B.
Kumar
,
D.
Hudson
,
I.
D’Souza
, and
R.
Girard
, “
A comprehensive design and performance analysis of low earth orbit satellite quantum communication
,”
New J. Phys.
15
,
023006
(
2013
).
32.
R. M. A.
Azzam
, “
Stokes-vector and Mueller-matrix polarimetry
,”
J. Opt. Soc. Am. A
33
,
1396
1408
(
2016
).
33.
J.
Bailey
,
L.
Kedziora-Chudczer
,
D. V.
Cotton
,
K.
Bott
,
J. H.
Hough
, and
P. W.
Lucas
, “
A high-sensitivity polarimeter using a ferro-electric liquid crystal modulator
,”
Mon. Not. R. Astron. Soc.
449
,
3064
3073
(
2015
).
34.
M.
Vedel
,
S.
Breugnot
, and
N.
Lechocinski
, “
Full Stokes polarization imaging camera
,”
Proc. SPIE
8160
,
81600X
(
2011
).
You do not currently have access to this content.