Wireless sensor networks play a very important role in environmental monitoring, structural health monitoring, smart city construction, smart grid, and ecological agriculture. The wireless sensor nodes powered by a battery have a limited service life and need periodic maintenance due to the limitation of battery capacity. Fortunately, the development of environmental energy harvesting technology provides an effective way to eliminate the needs and the replacement of the batteries. Among the environmental stray energy, wind energy is rich, almost endless, widely distributed, and clean. Due to the advantages of simple structure, miniaturization, and high power density, wind energy harvesters using piezoelectric materials (PWEHs) have attracted much attention. By the ways of principal exploration, structure design, and performance optimization, great and steady progress has been made in the research of PWEH. This Review is focused on the review of PWEHs. After introducing the basic principle of PWEHs, the structural performance and research status of PWEHs based on different mechanisms, such as a rotating turbine, vortex-induced vibration, flutter, and galloping, are analyzed and summarized. Finally, the development trend of PWEHs has been prospected.

1.
M. T.
Todaro
,
F.
Guido
,
V.
Mastronardi
,
D.
Desmaele
,
G.
Epifani
,
L.
Algieri
, and
M.
De Vittorio
, “
Piezoelectric MEMS vibrational energy harvesters: Advances and outlook
,”
Microelectron. Eng.
183-184
,
23
36
(
2017
).
2.
J. X.
Tao
,
N. V.
Viet
,
A.
Carpinteri
, and
Q.
Wang
, “
Energy harvesting from wind by a piezoelectric harvester
,”
Eng. Struct.
133
,
74
80
(
2017
).
3.
A.
Abdelkefi
, “
Aeroelastic energy harvesting: A review
,”
Int. J. Eng. Sci.
100
,
112
135
(
2016
).
4.
H. D.
Le
and
S. D.
Kwon
, “
An electromagnetic galloping energy harvester with double magnet design
,”
Appl. Phys. Lett.
115
,
133901
(
2019
).
5.
J.
Wang
,
L.
Geng
,
L.
Ding
,
H.
Zhu
, and
D.
Yurchenko
, “
The state-of-the-art review on energy harvesting from flow-induced vibrations
,”
Appl. Energy
267
,
114902
(
2020
).
6.
Z.
Guo
,
T.
Liu
,
K.
Xu
,
J.
Wang
,
W.
Li
, and
Z.
Chen
, “
Parametric analysis and optimization of a simple wind turbine in high speed railway tunnels
,”
Renewable Energy
161
,
825
835
(
2020
).
7.
V.
Cognet
,
S.
Courrech du Pont
, and
B.
Thiria
, “
Material optimization of flexible blades for wind turbines
,”
Renewable Energy
160
,
1373
1384
(
2020
).
8.
Z. H.
Lai
,
J. L.
Wang
,
C. L.
Zhang
,
G. Q.
Zhang
, and
D.
Yurchenko
, “
Harvest wind energy from a vibro-impact DEG embedded into a bluff body
,”
Energy Convers. Manage.
199
,
111993
(
2019
).
9.
K.
Liu
,
M.
Yu
, and
W.
Zhu
, “
Enhancing wind energy harvesting performance of vertical axis wind turbines with a new hybrid design: A fluid-structure interaction study
,”
Renewable Energy
140
,
912
927
(
2019
).
10.
L.
Zhang
,
B.
Meng
,
Y.
Xia
,
Z.
Deng
,
H.
Dai
,
P.
Hagedorn
,
Z.
Peng
, and
L.
Wang
, “
Galloping triboelectric nanogenerator for energy harvesting under low wind speed
,”
Nano Energy
70
,
104477
(
2020
).
11.
S. R.
Etesami
and
J.
Berakdar
, “
Efficient thermal energy harvesting using nanoscale magnetoelectric heterostructures
,”
Appl. Phys. Lett.
108
,
053903
(
2016
).
12.
O. H.
Ando Junior
,
A. L. O.
Maran
, and
N. C.
Henao
, “
A review of the development and applications of thermoelectric microgenerators for energy harvesting
,”
Renewable Sustainable Energy Rev.
91
,
376
393
(
2018
).
13.
R.
Tian
,
C.
Wan
,
N.
Hayashi
,
T.
Aoai
, and
K.
Koumoto
, “
Wearable and flexible thermoelectrics for energy harvesting
,”
MRS Bull.
43
,
193
198
(
2018
).
14.
L. Z.
Broderick
,
B. R.
Albert
,
B. S.
Pearson
,
L. C.
Kimerling
, and
J.
Michel
, “
Design for energy: Modeling of spectrum, temperature and device structure dependences of solar cell energy production
,”
Sol. Energy Mater. Sol. Cells
136
,
48
63
(
2015
).
15.
A. A. F.
Husain
,
W. Z. W.
Hasan
,
S.
Shafie
,
M. N.
Hamidon
, and
S. S.
Pandey
, “
A review of transparent solar photovoltaic technologies
,”
Renewable Sustainable Energy Rev.
94
,
779
791
(
2018
).
16.
B.
Alavikia
,
T. S.
Almoneef
, and
O. M.
Ramahi
, “
Wideband resonator arrays for electromagnetic energy harvesting and wireless power transfer
,”
Appl. Phys. Lett.
107
,
243902
(
2015
).
17.
Y.
Tan
,
Y.
Dong
, and
X.
Wang
, “
Review of MEMS electromagnetic vibration energy harvester
,”
J. Microelectromech. Syst.
26
,
1
16
(
2017
).
18.
M. G.
Kang
,
R.
Sriramdas
,
H.
Lee
,
J.
Chun
,
D.
Maurya
,
G. T.
Hwang
,
J.
Ryu
, and
S.
Priya
, “
High power magnetic field energy harvesting through amplified magneto-mechanical vibration
,”
Adv. Energy Mater.
8
,
1703313
(
2018
).
19.
H.
Wang
,
A.
Jasim
, and
X.
Chen
, “
Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review
,”
Appl. Energy
212
,
1083
1094
(
2018
).
20.
E. M.
Nia
,
N. A. W. A.
Zawawi
, and
B. S. M.
Singh
, “
A review of walking energy harvesting using piezoelectric materials
,”
IOP Conf. Ser.: Mater. Sci. Eng.
291
,
012026
(
2018
).
21.
H.
Fu
,
Z.
Sharif-Khodaei
, and
F.
Aliabadi
, “
A bio-inspired host-parasite structure for broadband vibration energy harvesting from low-frequency random sources
,”
Appl. Phys. Lett.
114
,
143901
(
2019
).
22.
H.
Elahi
,
K.
Munir
,
M.
Eugeni
, and
S.
Atek
, “
Energy harvesting towards self-powered IoT devices
,”
Energies
13
,
5528
(
2020
).
23.
R. J. M.
Vullers
,
R.
van Schaijk
,
I.
Doms
,
C.
Van Hoof
, and
R.
Mertens
, “
Micropower energy harvesting
,”
Solid-State Electron.
53
,
684
693
(
2009
).
24.
T.
Ikeda
,
H.
Tanaka
,
R.
Yoshimura
,
R.
Noda
,
T.
Fujii
, and
H.
Liu
, “
A robust biomimetic blade design for micro wind turbines
,”
Renewable Energy
125
,
155
165
(
2018
).
25.
S. D.
Moss
,
O. R.
Payne
,
G. A.
Hart
, and
C.
Ung
, “
Scaling and power density metrics of electromagnetic vibration energy harvesting devices
,”
Smart Mater. Struct.
24
,
023001
(
2015
).
26.
T.
Asai
,
Y.
Araki
, and
K.
Ikago
, “
Energy harvesting potential of tuned inertial mass electromagnetic transducers
,”
Mech. Syst. Signal Process.
84
,
659
672
(
2017
).
27.
Y.
Zhang
,
T.
Wang
,
A.
Zhang
,
Z.
Peng
,
D.
Luo
,
R.
Chen
, and
F.
Wang
, “
Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency
,”
Rev. Sci. Instrum.
87
,
125001
(
2016
).
28.
C. L.
Zhang
,
Z. H.
Lai
,
M. Q.
Li
, and
D.
Yurchenko
, “
Wind energy harvesting from a conventional turbine structure with an embedded vibro-impact dielectric elastomer generator
,”
J. Sound Vib.
487
,
115616
(
2020
).
29.
Y.
Zhang
,
T.
Wang
,
A.
Luo
,
Y.
Hu
,
X.
Li
, and
F.
Wang
, “
Micro electrostatic energy harvester with both broad bandwidth and high normalized power density
,”
Appl. Energy
212
,
362
371
(
2018
).
30.
J.
Lee
and
B.
Choi
, “
Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires
,”
Energy Convers. Manage.
78
,
32
38
(
2014
).
31.
M.
Hamlehdar
,
A.
Kasaeian
, and
M. R.
Safaei
, “
Energy harvesting from fluid flow using piezoelectrics: A critical review
,”
Renewable Energy
143
,
1826
1838
(
2019
).
32.
P.
Shivashankar
and
S.
Gopalakrishnan
, “
Review on the use of piezoelectric materials for active vibration, noise, and flow control
,”
Smart Mater. Struct.
29
,
053001
(
2020
).
33.
P. K.
Sharma
and
P. V.
Baredar
, “
Analysis on piezoelectric energy harvesting small scale device—A review
,”
J. King Saud Univ., Sci.
31
,
869
877
(
2019
).
34.
P.
Chaware
,
S.
Bhusate
,
A.
Bole
, and
A. B.
Nagdewate
, “
A review: Power harvesting from piezoelectric materials
,”
Int. Res. J. Eng. Technol
4
,
1263
1265
(
2017
).
35.
M.
Safaei
,
H. A.
Sodano
, and
S. R.
Anton
, “
A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008-2018)
,”
Smart Mater. Struct.
28
,
113001
(
2019
).
36.
M.
Zhou
,
M. S. H.
Al-Furjan
,
J.
Zou
, and
W.
Liu
, “
A review on heat and mechanical energy harvesting from human—Principles, prototypes and perspectives
,”
Renewable Sustainable Energy Rev.
82
,
3582
3609
(
2018
).
37.
R. K.
Sood
,
Piezoelectric Micro Power Generator (PMPG): A MEMS-Based Energy Scavenger
(
MIT
,
2003
).
38.
Y. B.
Jeon
,
R.
Sood
,
J.-h.
Jeong
, and
S.-G.
Kim
, “
MEMS power generator with transverse mode thin film PZT
,”
Sens. Actuators, A
122
,
16
22
(
2005
).
39.
L.
Zhao
and
Y.
Yang
, “
Toward small-scale wind energy harvesting: Design, enhancement, performance comparison, and applicability
,”
Shock Vib.
2017
,
3585972
.
40.
J.
Zhang
,
Z.
Fang
,
C.
Shu
,
J.
Zhang
,
Q.
Zhang
, and
C.
Li
, “
A rotational piezoelectric energy harvester for efficient wind energy harvesting
,”
Sens. Actuators, A
262
,
123
129
(
2017
).
41.
S.
Priya
,
C. T.
Chen
,
D.
Fye
, and
J.
Zahnd
, “
Piezoelectric windmill: A novel solution to remote sensing
,”
Jpn. J. Appl. Phys., Part 2
44
,
L104
(
2005
).
42.
S.
Priya
, “
Modeling of electric energy harvesting using piezoelectric windmill
,”
Appl. Phys. Lett.
87
,
184101
(
2005
).
43.
C. M. T.
Tien
and
N. S.
Goo
, “
Use of a piezo-composite generating element for harvesting wind energy in an urban region
,”
Aircr. Eng. Aerosp. Technol.
82
,
376
381
(
2010
).
44.
Y.
Yang
,
Q.
Shen
,
J.
Jin
,
Y.
Wang
,
W.
Qian
, and
D.
Yuan
, “
Rotational piezoelectric wind energy harvesting using impact-induced resonance
,”
Appl. Phys. Lett.
105
,
053901
(
2014
).
45.
H. J.
Jung
,
Y.
Song
,
S. K.
Hong
,
C. H.
Yang
,
S. J.
Hwang
,
S. Y.
Jeong
, and
T. H.
Sung
, “
Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network
,”
Sens. Actuators, A
222
,
314
321
(
2015
).
46.
N.
Chen
,
T.
Wei
,
H. J.
Jung
, and
S.
Lee
, “
Quick self-start and minimum power-loss management circuit for impact-type micro wind piezoelectric energy harvesters
,”
Sens. Actuators, A
263
,
23
29
(
2017
).
47.
M.
Tang
,
Q.
Guan
,
X.
Wu
,
X.
Zeng
,
Z.
Zhang
, and
Y.
Yuan
, “
A high-efficiency multidirectional wind energy harvester based on impact effect for self-powered wireless sensors in the grid
,”
Smart Mater. Struct.
28
,
115022
(
2019
).
48.
S.
Bressers
,
D.
Avirovik
,
M.
Lallart
,
D. J.
Inman
, and
S.
Priya
, “
Contact-less wind turbine utilizing piezoelectric bimorphs with magnetic actuation
,” in
Conference Proceedings of the Society for Experimental Mechanics Series
(
Springer
,
2011
), Vol. 3, pp.
233
243
.
49.
D.
Avirovik
,
R.
Kishore
,
S.
Bressers
,
D. J.
Inman
, and
S.
Priya
, “
Miniature contactless piezoelectric wind turbine
,”
Integr. Ferroelectr.
159
,
1
13
(
2015
).
50.
M. A.
Karami
,
J. R.
Farmer
, and
D. J.
Inman
, “
Parametrically excited nonlinear piezoelectric compact wind turbine
,”
Renewable Energy
50
,
977
987
(
2013
).
51.
J.
Kan
,
C.
Fan
,
S.
Wang
,
Z.
Zhang
,
J.
Wen
, and
L.
Huang
, “
Study on a piezo-windmill for energy harvesting
,”
Renewable Energy
97
,
210
217
(
2016
).
52.
E.
Kurt
,
F.
Cottone
,
Y.
Uzun
,
F.
Orfei
,
M.
Mattarelli
, and
D.
Özhan
, “
Design and implementation of a new contactless triple piezoelectrics wind energy harvester
,”
Int. J. Hydrogen Energy
42
,
17813
17822
(
2017
).
53.
L.-C.
Zhao
,
H.-X.
Zou
,
G.
Yan
,
F.-R.
Liu
,
T.
Tan
,
K.-X.
Wei
, and
W.-M.
Zhang
, “
Magnetic coupling and flextensional amplification mechanisms for high-robustness ambient wind energy harvesting
,”
Energy Convers. Manage.
201
,
112166
(
2019
).
54.
R. A.
Kishore
,
D.
Vučković
, and
S.
Priya
, “
Ultra-low wind speed piezoelectric windmill
,”
Ferroelectrics
460
,
98
107
(
2014
).
55.
N.
Rezaei-Hosseinabadi
,
A.
Tabesh
,
R.
Dehghani
, and
A.
Aghili
, “
An efficient piezoelectric windmill topology for energy harvesting from low-speed air flows
,”
IEEE Trans. Ind. Electron
62
,
3576
3583
(
2015
).
56.
C. H.
Yang
,
Y.
Song
,
J.
Jhun
,
W. S.
Hwang
,
S.
Do Hong
,
S. B.
Woo
,
T. H.
Sung
,
S. W.
Jeong
, and
H. H.
Yoo
, “
A high efficient piezoelectric windmill using magnetic force for low wind speed in wireless sensor networks
,”
J. Korean Phys. Soc.
73
,
1889
1894
(
2018
).
57.
L.-C.
Zhao
,
H.-X.
Zou
,
G.
Yan
,
F.-R.
Liu
,
T.
Tan
,
W.-M.
Zhang
,
Z.-K.
Peng
, and
G.
Meng
, “
A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester
,”
Appl. Energy
239
,
735
746
(
2019
).
58.
S.
Li
and
H.
Lipson
, “
Vertical-stalk flapping-leaf generator for wind energy harvesting
,” in
Proceedings ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems 2009 (SMASIS2009)
(
ASME
,
2009
), Vol. 2, pp.
611
619
.
59.
W.
Wang
,
X.
He
,
X.
Wang
,
M.
Wang
, and
K.
Xue
, “
A bioinspired structure modification of piezoelectric wind energy harvester based on the prototype of leaf veins
,”
Sens. Actuators, A
279
,
467
473
(
2018
).
60.
J. D.
Hobeck
and
D. J.
Inman
, “
Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration
,”
Smart Mater. Struct.
21
,
105024
(
2012
).
61.
H. D.
AkaydIn
,
N.
Elvin
, and
Y.
Andreopoulos
, “
Wake of a cylinder: A paradigm for energy harvesting with piezoelectric materials
,”
Exp. Fluids
49
,
291
304
(
2010
).
62.
H. D.
Akaydin
,
N.
Elvin
, and
Y.
Andreopoulos
, “
The performance of a self-excited fluidic energy harvester
,”
Smart Mater. Struct.
21
,
025007
(
2012
).
63.
M.
Zhang
and
J.
Wang
, “
Experimental study on piezoelectric energy harvesting from vortex-induced vibrations and wake-induced vibrations
,”
J. Sens.
2016
,
2673292
.
64.
J.
Zhang
,
J.
Zhang
,
C.
Shu
, and
Z.
Fang
, “
Enhanced piezoelectric wind energy harvesting based on a buckled beam
,”
Appl. Phys. Lett.
110
,
183903
(
2017
).
65.
W.
Sun
and
J.
Seok
, “
A novel self-tuning wind energy harvester with a slidable bluff body using vortex-induced vibration
,”
Energy Convers. Manage.
205
,
112472
(
2020
).
66.
W.-J.
Su
and
W.-Y.
Lin
, “
Design and analysis of a vortex-induced bi-directional piezoelectric energy harvester
,”
Int. J. Mech. Sci.
173
,
105457
(
2020
).
67.
S.
Adhikari
,
A.
Rastogi
, and
B.
Bhattacharya
, “
Piezoelectric vortex induced vibration energy harvesting in a random flow field
,”
Smart Mater. Struct.
29
,
035034
(
2020
).
68.
X.
Gao
,
W.-H.
Shih
, and
W. Y.
Shih
, “
Flow energy harvesting using piezoelectric cantilevers with cylindrical extension
,”
IEEE Trans. Ind. Electron
60
,
1116
1118
(
2013
).
69.
W. B.
Hobbs
and
D. L.
Hu
, “
Tree-inspired piezoelectric energy harvesting
,”
J. Fluids Struct.
28
,
103
114
(
2012
).
70.
A.
Mehmood
,
A.
Abdelkefi
,
M. R.
Hajj
,
A. H.
Nayfeh
,
I.
Akhtar
, and
A. O.
Nuhait
, “
Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder
,”
J. Sound Vib.
332
,
4656
4667
(
2013
).
71.
H. L.
Dai
,
A.
Abdelkefi
,
Y.
Yang
, and
L.
Wang
, “
Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations
,”
Appl. Phys. Lett.
108
,
053902
(
2016
).
72.
J.
Jia
,
X.
Shan
,
D.
Upadrashta
,
T.
Xie
,
Y.
Yang
, and
R.
Song
, “
Modeling and analysis of upright piezoelectric energy harvester under aerodynamic vortex-induced vibration
,”
Micromachines
9
,
667
(
2018
).
73.
J.
Wang
,
G.
Hu
,
Z.
Su
,
G.
Li
,
W.
Zhao
,
L.
Tang
, and
L.
Zhao
, “
A cross-coupled dual-beam for multi-directional energy harvesting from vortex induced vibrations
,”
Smart Mater. Struct.
28
,
12LT02
(
2019
).
74.
Y. J.
Lee
,
Y.
Qi
,
G.
Zhou
, and
K. B.
Lua
, “
Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation
,”
Sci. Rep.
9
,
20404
(
2019
).
75.
H.
Asghari
and
M.
Dardel
, “
Geometric and structural optimization of fluid energy harvester with high efficiency and bandwidth
,”
Eur. J. Mech., B: Fluids
79
,
428
443
(
2020
).
76.
L. B.
Zhang
,
H. L.
Dai
,
A.
Abdelkefi
, and
L.
Wang
, “
Improving the performance of aeroelastic energy harvesters by an interference cylinder
,”
Appl. Phys. Lett.
111
,
073904
(
2017
).
77.
L. B.
Zhang
,
H. L.
Dai
,
A.
Abdelkefi
, and
L.
Wang
, “
Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections
,”
Energy
167
,
970
981
(
2019
).
78.
X.-F.
He
and
J.
Gao
, “
Wind energy harvesting based on flow-induced-vibration and impact
,”
Microelectron. Eng.
111
,
82
86
(
2013
).
79.
C. A.
Kitio Kwuimy
,
G.
Litak
,
M.
Borowiec
, and
C.
Nataraj
, “
Performance of a piezoelectric energy harvester driven by air flow
,”
Appl. Phys. Lett.
100
,
024103
(
2012
).
80.
L. B.
Zhang
,
A.
Abdelkefi
,
H. L.
Dai
,
R.
Naseer
, and
L.
Wang
, “
Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations
,”
J. Sound Vib.
408
,
210
219
(
2017
).
81.
W.
Qin
,
W.
Deng
,
J.
Pan
,
Z.
Zhou
,
W.
Du
, and
P.
Zhu
, “
Harvesting wind energy with bi-stable snap-through excited by vortex-induced vibration and galloping
,”
Energy
189
,
116237
(
2019
).
82.
M.
Stender
,
M.
Tiedemann
, and
N.
Hoffmann
, “
Energy harvesting below the onset of flutter
,”
J. Sound Vib.
458
,
17
21
(
2019
).
83.
Y. K.
Tan
and
S. K.
Panda
, “
A novel piezoelectric based wind energy harvester for low-power autonomous wind speed sensor
,” in
IECON Proceedings of IEEE Industrial Electronics Society
(
IEEE
,
2007
), pp.
2175
2180
.
84.
S. D.
Kwon
, “
A T-shaped piezoelectric cantilever for fluid energy harvesting
,”
Appl. Phys. Lett.
97
,
164102
(
2010
).
85.
S.
Li
,
J.
Yuan
, and
H.
Lipson
, “
Ambient wind energy harvesting using cross-flow fluttering
,”
J. Appl. Phys.
109
,
026104
(
2011
).
86.
J. M.
McCarthy
,
S.
Watkins
,
A.
Deivasigamani
,
S. J.
John
, and
F.
Coman
, “
An investigation of fluttering piezoelectric energy harvesters in off-axis and turbulent flows
,”
J. Wind Eng. Ind. Aerodyn.
136
,
101
113
(
2015
).
87.
J.
Liu
,
H.
Zuo
,
W.
Xia
,
Y.
Luo
,
D.
Yao
,
Y.
Chen
,
K.
Wang
, and
Q.
Li
, “
Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode
,”
Microelectron. Eng.
231
,
111333
(
2020
).
88.
Z.
Rong
,
B.
Cao
, and
J.
Hu
, “
Stability analysis on an aeroelastic system for design of a flutter energy harvester
,”
Aerosp. Sci. Technol.
60
,
203
209
(
2017
).
89.
F. D.
Marques
,
D. A.
Pereira
,
M. Y.
Zakaria
, and
M. R.
Hajj
, “
Power extraction from stall-induced oscillations of an airfoil
,”
J. Intell. Mater. Syst. Struct.
29
,
1407
1417
(
2018
).
90.
F. F.
Siala
and
J. A.
Liburdy
, “
Power estimation of flapping foil energy harvesters using vortex impulse theory
,”
Renewable Energy
154
,
894
902
(
2020
).
91.
A.
Erturk
,
W. G. R.
Vieira
,
C.
De Marqui
, and
D. J.
Inman
, “
On the energy harvesting potential of piezoaeroelastic systems
,”
Appl. Phys. Lett.
96
,
184103
(
2010
).
92.
V. C.
Sousa
,
M. D. M.
Anicézio
,
C.
De Marqui
, and
A.
Erturk
, “
Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: Theory and experiment
,”
Smart Mater. Struct.
20
,
094007
(
2011
).
93.
A.
MaterialsAbdelkefi
and
A. O.
Nuhait
, “
Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters
,”
Smart Mater. Struct
22
,
095029
(
2013
).
94.
A.
Abdelkefi
,
M.
Ghommem
,
A. O.
Nuhait
, and
M. R.
Hajj
, “
Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters
,”
J. Sound Vib.
333
,
166
177
(
2014
).
95.
Y.
Wu
,
D.
Li
, and
J.
Xiang
, “
Dimensionless modeling and nonlinear analysis of a coupled pitch–plunge–leadlag airfoil-based piezoaeroelastic energy harvesting system
,”
Nonlinear Dyn.
92
,
153
167
(
2018
).
96.
M.
Bryant
,
E.
Wolff
, and
E.
Garcia
, “
Aeroelastic flutter energy harvester design: The sensitivity of the driving instability to system parameters
,”
Smart Mater. Struct.
20
,
125017
(
2011
).
97.
M.
Bryant
and
E.
Garcia
, “
Modeling and testing of a novel aeroelastic flutter energy harvester
,”
J. Vib. Acoust.
133
,
011010
(
2011
).
98.
L.
Zhao
and
Y.
Yang
, “
Enhanced aeroelastic energy harvesting with a beam stiffener
,”
Smart Mater. Struct.
24
,
032001
(
2015
).
99.
M.
Hafezi
and
H. R.
Mirdamadi
, “
A novel design for an adaptive aeroelastic energy harvesting system: Flutter and power analysis,
,”
J. Braz. Soc. Mech. Sci. Eng.
41
,
9
(
2019
).
100.
Y.
Wu
,
D.
Li
, and
J.
Xiang
, “
Performance analysis and parametric design of an airfoil- based piezoaeroelastic energy harvester
,” in
56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
(
AIAA
,
2015
).
101.
C.
Bao
,
Y.
Dai
,
P.
Wang
, and
G.
Tang
, “
A piezoelectric energy harvesting scheme based on stall flutter of airfoil section
,”
Eur. J. Mech., B: Fluids
75
,
119
132
(
2019
).
102.
T.
Cheng
,
X.
Fu
,
W.
Liu
,
X.
Lu
,
X.
Chen
,
Y.
Wang
, and
G.
Bao
, “
Airfoil-based cantilevered polyvinylidene fluoride layer generator for translating amplified air-flow energy
,”
Renewable Energy
135
,
399
407
(
2019
).
103.
X.
Shan
,
H.
Tian
,
H.
Cao
,
J.
Feng
, and
T.
Xie
, “
Experimental investigation on a novel airfoil-based piezoelectric energy harvester for aeroelastic vibration
,”
Micromachines
11
,
725
(
2020
).
104.
C. M.
Leung
,
Y.
Wang
, and
W.
Chen
, “
Airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and multi-pole magnets towards enhanced power density
,”
Rev. Sci. Instrum.
87
,
114705
(
2016
).
105.
M.
Iqbal
and
F. U.
Khan
, “
Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications
,”
Energy Convers. Manage.
172
,
611
618
(
2018
).
106.
F.
Cakmak
,
S.
Basaran
, and
S.
Sivrioglu
, “
Piezoelectric and electromagnetic hybrid energy harvesting with low-frequency vibrations of an aerodynamic profile under the air effect
,”
Mech. Syst. Signal Process.
133
,
106246
(
2019
).
107.
X.
Li
,
Z.
Li
,
C.
Bi
,
B.
Liu
, and
Y.
Su
, “
Study on wind energy harvesting effect of a vehicle-mounted piezo-electromagnetic hybrid energy harvester
,”
IEEE Access
8
,
167631
167646
(
2020
).
108.
D.
Zhao
and
E.
Ega
, “
Energy harvesting from self-sustained aeroelastic limit cycle oscillations of rectangular wings
,”
Appl. Phys. Lett.
105
,
103903
(
2014
).
109.
M. Y.
Zakaria
,
M. Y.
Al-Haik
, and
M. R.
Hajj
, “
Experimental analysis of energy harvesting from self-induced flutter of a composite beam
,”
Appl. Phys. Lett.
107
,
023901
(
2015
).
110.
S.
Orrego
,
K.
Shoele
,
A.
Ruas
,
K.
Doran
,
B.
Caggiano
,
R.
Mittal
, and
S. H.
Kang
, “
Harvesting ambient wind energy with an inverted piezoelectric flag
,”
Appl. Energy
194
,
212
222
(
2017
).
111.
X.
Chen
,
B.
Sun
,
C.
Dai
, and
X.
Wang
, “
Wind energy harvesting using jet-edge flow oscillations
,”
AIP Adv.
8
,
095018
(
2018
).
112.
A.-M.
Stamatellou
and
A. I.
Kalfas
, “
Experimental investigation of energy harvesting from swirling flows using a piezoelectric film transducer
,”
Energy Convers. Manage.
171
,
1405
1415
(
2018
).
113.
X.
Shan
,
H.
Tian
, and
T.
Xie
, “
Energy harvesting performance of a wing panel for aeroelastic vibration
,”
Int. J. Struct. Stab. Dyn.
19
,
1950102
(
2019
).
114.
D.
Jun Li
,
S.
Hong
,
S.
Gu
,
Y.
Choi
,
S.
Nakhmanson
,
O.
Heinonen
,
D.
Karpeev
, and
K.
No
, “
Polymer piezoelectric energy harvesters for low wind speed
,”
Appl. Phys. Lett.
104
,
012902
(
2014
).
115.
Z.
Wang
and
F.
Narita
, “
Corona poling conditions for barium titanate/epoxy composites and their unsteady wind energy harvesting potential
,”
Adv. Eng. Mater
21
,
1900169
(
2019
).
116.
Z.
Wang
and
F.
Narita
, “
Fabrication of potassium sodium niobate nano-particle/polymer composites with piezoelectric stability and their application to unsteady wind energy harvesters
,”
J. Appl. Phys.
126
,
224501
(
2019
).
117.
R.
Pandey
,
G.
Khandelwal
,
I. A.
Palani
,
V.
Singh
, and
S.-J.
Kim
, “
A La-doped ZnO ultra-flexible flutter-piezoelectric nanogenerator for energy harvesting and sensing applications: A novel renewable source of energy
,”
Nanoscale
11
,
14032
14041
(
2019
).
118.
D.
Kim
,
J.
Cossé
,
C.
Huertas Cerdeira
, and
M.
Gharib
, “
Flapping dynamics of an inverted flag
,”
J. Fluid Mech.
736
,
R1
(
2013
).
119.
S.
Petroni
,
F.
Rizzi
,
F.
Guido
,
A.
Cannavale
,
T.
Donateo
,
F.
Ingrosso
,
V. M.
Mastronardi
,
R.
Cingolani
, and
M.
De Vittorio
, “
Flexible AlN flags for efficient wind energy harvesting at ultralow cut-in wind speed
,”
RSC Adv.
5
,
14047
14052
(
2015
).
120.
J.
Silva-Leon
,
A.
Cioncolini
,
M. R. A.
Nabawy
,
A.
Revell
, and
A.
Kennaugh
, “
Simultaneous wind and solar energy harvesting with inverted flags
,”
Appl. Energy
239
,
846
858
(
2019
).
121.
H.
Elahi
,
M.
Eugeni
,
F.
Fune
,
L.
Lampani
,
F.
Mastroddi
,
G. P.
Romano
, and
P.
Gaudenzi
, “
Performance evaluation of a piezoelectric energy harvester based on flag-flutter
,”
Micromachines
11
,
933
(
2020
).
122.
M.
Eugeni
,
H.
Elahi
,
F.
Fune
,
L.
Lampani
,
F.
Mastroddi
,
G. P.
Romano
, and
P.
Gaudenzi
, “
Numerical and experimental investigation of piezoelectric energy harvester based on flag-flutter
,”
Aerosp. Sci. Technol.
97
,
105634
(
2020
).
123.
S.
Mazharmanesh
,
J.
Young
,
F.-B.
Tian
, and
J. C. S.
Lai
, “
Energy harvesting of two inverted piezoelectric flags in tandem, side-by-side and staggered arrangements
,”
Int. J. Heat Fluid Flow
83
,
108589
(
2020
).
124.
W.
Sun
,
Z.
Ding
,
Z.
Qin
,
F.
Chu
, and
Q.
Han
, “
Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators
,”
Nano Energy
70
,
104526
(
2020
).
125.
J.
Zhao
,
J.
Yang
,
Z.
Lin
,
N.
Zhao
,
J.
Liu
,
Y.
Wen
, and
P.
Li
, “
An arc-shaped piezoelectric generator for multi-directional wind energy harvesting
,”
Sens. Actuators, A
236
,
173
179
(
2015
).
126.
X.
Shan
,
H.
Tian
,
D.
Chen
, and
T.
Xie
, “
A curved panel energy harvester for aeroelastic vibration
,”
Appl. Energy
249
,
58
66
(
2019
).
127.
Z.
Zhou
,
W.
Qin
,
P.
Zhu
, and
S.
Shang
, “
Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings
,”
Energy
153
,
400
412
(
2018
).
128.
Z.
Zhou
,
W.
Qin
,
P.
Zhu
,
W.
Du
,
W.
Deng
, and
J.
Pan
, “
Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing
,”
Appl. Phys. Lett.
114
,
243902
(
2019
).
129.
K.
Li
,
Z.
Yang
,
Y.
Gu
,
S.
He
, and
S.
Zhou
, “
Nonlinear magnetic-coupled flutter-based aeroelastic energy harvester: Modeling, simulation and experimental verification
,”
Smart Mater. Struct.
28
,
015020
(
2019
).
130.
K.
Li
,
Z.
Yang
, and
S.
Zhou
, “
Performance enhancement for a magnetic-coupled bi-stable flutter-based energy harvester
,”
Smart Mater. Struct.
29
,
085045
(
2020
).
131.
F. R.
Liu
,
H. X.
Zou
,
W. M.
Zhang
,
Z. K.
Peng
, and
G.
Meng
, “
Y-type three-blade bluff body for wind energy harvesting
,”
Appl. Phys. Lett.
112
,
233903
(
2018
).
132.
A.
Barrero-Gil
,
G.
Alonso
, and
A.
Sanz-Andres
, “
Energy harvesting from transverse galloping
,”
J. Sound Vib.
329
,
2873
2883
(
2010
).
133.
J.
Sirohi
and
R.
Mahadik
, “
Harvesting wind energy using a galloping piezoelectric beam
,”
J. Vib. Acoust.
134
,
011009
(
2012
).
134.
J.
Sirohi
and
R.
Mahadik
, “
Piezoelectric wind energy harvester for low-power sensors
,”
J. Intell. Mater. Syst. Struct.
22
,
2215
2228
(
2011
).
135.
J.
Wang
,
S.
Wen
,
X.
Zhao
,
M.
Zhang
, and
J.
Ran
, “
Piezoelectric wind energy harvesting from self-excited vibration of square cylinder
,”
J. Sens.
2016
,
2353517
.
136.
Y.
Yang
,
L.
Zhao
, and
L.
Tang
, “
Comparative study of tip cross-sections for efficient galloping energy harvesting
,”
Appl. Phys. Lett.
102
,
064105
(
2013
).
137.
U.
Javed
and
A.
Abdelkefi
, “
Role of the galloping force and moment of inertia of inclined square cylinders on the performance of hybrid galloping energy harvesters
,”
Appl. Energy
231
,
259
276
(
2018
).
138.
J.
Wang
,
L.
Tang
,
L.
Zhao
, and
Z.
Zhang
, “
Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies
,”
Energy
172
,
1066
1078
(
2019
).
139.
A.
Bibo
and
M. F.
Daqaq
, “
On the optimal performance and universal design curves of galloping energy harvesters
,”
Appl. Phys. Lett.
104
,
023901
(
2014
).
140.
T.
Tan
and
Z.
Yan
, “
Analytical solution and optimal design for galloping-based piezoelectric energy harvesters
,”
Appl. Phys. Lett.
109
,
253902
(
2016
).
141.
U.
Javed
and
A.
Abdelkefi
, “
Impacts of the aerodynamic force representation on the stability and performance of a galloping-based energy harvester
,”
J. Sound Vib.
400
,
213
226
(
2017
).
142.
G. R. S.
Assi
and
P. W.
Bearman
, “
Transverse galloping of circular cylinders fitted with solid and slotted splitter plates
,”
J. Fluids Struct.
54
,
263
280
(
2015
).
143.
J.
Song
,
G.
Hu
,
K. T.
Tse
,
S. W.
Li
, and
K. C. S.
Kwok
, “
Performance of a circular cylinder piezoelectric wind energy harvester fitted with a splitter plate
,”
Appl. Phys. Lett.
111
,
223903
(
2017
).
144.
A. H.
Alhadidi
,
H.
Alhussein
, and
M. F.
Daqaq
, “
Improving the sensitivity of galloping energy harvesters to flow fluctuations
,”
Appl. Phys. Lett.
116
,
263902
(
2020
).
145.
G.
Hu
,
J.
Wang
,
Z.
Su
,
G.
Li
,
H.
Peng
, and
K. C. S.
Kwok
, “
Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference
,”
Appl. Phys. Lett.
115
,
073901
(
2019
).
146.
C.
Lan
,
L.
Tang
,
G.
Hu
, and
W.
Qin
, “
Dynamics and performance of a two degree-of-freedom galloping-based piezoelectric energy harvester
,”
Smart Mater. Struct.
28
,
045018
(
2019
).
147.
G.
Hu
,
J.
Wang
,
H.
Qiao
,
L.
Zhao
,
Z.
Li
, and
L.
Tang
, “
An experimental study of a two-degree-of-freedom galloping energy harvester
,”
Int. J. Energy Res.
45
,
3365
(
2020
).
148.
W.
Sun
,
F.
Guo
, and
J.
Seok
, “
Development of a novel vibro-wind galloping energy harvester with high power density incorporated with a nested bluff-body structure
,”
Energy Convers. Manage.
197
,
111880
(
2019
).
149.
T.
Tan
,
X.
Hu
,
Z.
Yan
,
Y.
Zou
, and
W.
Zhang
, “
Piezoelectromagnetic synergy design and performance analysis for wind galloping energy harvester
,”
Sens. Actuators, A
302
,
111813
(
2020
).
150.
X.
He
,
X.
Yang
, and
S.
Jiang
, “
Enhancement of wind energy harvesting by interaction between vortex-induced vibration and galloping
,”
Appl. Phys. Lett.
112
,
033901
(
2018
).
151.
X.
Yang
,
X.
He
,
J.
Li
, and
S.
Jiang
, “
Modeling and verification of piezoelectric wind energy harvesters enhanced by interaction between vortex-induced vibration and galloping
,”
Smart Mater. Struct.
28
,
115027
(
2019
).
152.
T.
Tan
,
X.
Hu
,
Z.
Yan
, and
W.
Zhang
, “
Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor
,”
Energy
187
,
115915
(
2019
).
153.
M. Y. A.
Jamalabadi
,
M. S.
Shadloo
, and
A.
Karimipour
, “
Maximum obtainable energy harvesting power from galloping-based piezoelectrics
,”
Math. Probl. Eng.
2020
,
6140853
.
154.
L.
Zhao
and
Y.
Yang
, “
An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting
,”
Appl. Energy
212
,
233
243
(
2018
).
155.
G.
Hu
,
K. T.
Tse
,
K. C. S.
Kwok
,
J.
Song
, and
Y.
Lyu
, “
Aerodynamic modification to a circular cylinder to enhance the piezoelectric wind energy harvesting
,”
Appl. Phys. Lett.
109
,
193902
(
2016
).
156.
G.
Hu
,
K. T.
Tse
,
M.
Wei
,
R.
Naseer
,
A.
Abdelkefi
, and
K. C. S.
Kwok
, “
Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments
,”
Appl. Energy
226
,
682
689
(
2018
).
157.
J.
Wang
,
G.
Li
,
S.
Zhou
, and
G.
Litak
, “
Enhancing wind energy harvesting using passive turbulence control devices
,”
Appl. Sci.
9
,
998
(
2019
).
158.
L.
Ding
,
L.
Yang
,
Z.
Yang
,
L.
Zhang
,
C.
Wu
, and
B.
Yan
, “
Performance improvement of aeroelastic energy harvesters with two symmetrical fin-shaped rods
,”
J. Wind Eng. Ind. Aerodyn.
196
,
104051
(
2020
).
159.
G.
Hu
,
F.
Liu
,
L.
Li
,
C.
Li
,
Y.
Xiao
, and
K. C. S.
Kwok
, “
Wind energy harvesting performance of tandem circular cylinders with triangular protrusions
,”
J. Fluids Struct.
91
,
102780
(
2019
).
160.
K.
Zhao
,
Q.
Zhang
, and
W.
Wang
, “
Optimization of galloping piezoelectric energy harvester with V-shaped groove in low wind speed
,”
Energies
12
,
4619
(
2019
).
161.
F.-R.
Liu
,
W.-M.
Zhang
,
Z.-K.
Peng
, and
G.
Meng
, “
Fork-shaped bluff body for enhancing the performance of galloping-based wind energy harvester
,”
Energy
183
,
92
105
(
2019
).
162.
W.
Sun
,
S.
Jo
, and
J.
Seok
, “
Development of the optimal bluff body for wind energy harvesting using the synergetic effect of coupled vortex induced vibration and galloping phenomena
,”
Int. J. Mech. Sci.
156
,
435
445
(
2019
).
163.
D.
Zhao
,
X.
Hu
,
T.
Tan
,
Z.
Yan
, and
W.
Zhang
, “
Piezoelectric galloping energy harvesting enhanced by topological equivalent aerodynamic design
,”
Energy Convers. Manage.
222
,
113260
(
2020
).
164.
C.-F.
Zhou
,
H.-X.
Zou
,
K.-X.
Wei
, and
J.-G.
Liu
, “
Enhanced performance of piezoelectric wind energy harvester by a curved plate
,”
Smart Mater. Struct.
28
,
125022
(
2019
).
165.
Q.
Wang
,
H. X.
Zou
,
L. C.
Zhao
,
M.
Li
,
K. X.
Wei
,
L. P.
Huang
, and
W. M.
Zhang
, “
A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting
,”
Appl. Phys. Lett.
117
,
043902
(
2020
).
166.
J.
Wang
,
C.
Zhang
,
S.
Gu
,
K.
Yang
,
H.
Li
,
Y.
Lai
, and
D.
Yurchenko
, “
Enhancement of low-speed piezoelectric wind energy harvesting by bluff body shapes: Spindle-like and butterfly-like cross-sections
,”
Aerosp. Sci. Technol.
103
,
105898
(
2020
).
167.
K.
Yang
,
K.
Su
,
J.
Wang
,
J.
Wang
,
K.
Yin
, and
G.
Litak
, “
Piezoelectric wind energy harvesting subjected to the conjunction of vortex-induced vibration and galloping: Comprehensive parametric study and optimization
,”
Smart Mater. Struct.
29
,
075035
(
2020
).
168.
S.
Tucker Harvey
,
I. A.
Khovanov
, and
P.
Denissenko
, “
A galloping energy harvester with flow attachment
,”
Appl. Phys. Lett.
114
,
104103
(
2019
).
169.
A.
Abdelkefi
,
J. M.
Scanlon
,
E.
McDowell
, and
M. R.
Hajj
, “
Performance enhancement of piezoelectric energy harvesters from wake galloping
,”
Appl. Phys. Lett.
103
,
033903
(
2013
).
170.
M.
Usman
,
A.
Hanif
,
I.-H.
Kim
, and
H.-J.
Jung
, “
Experimental validation of a novel piezoelectric energy harvesting system employing wake galloping phenomenon for a broad wind spectrum
,”
Energy
153
,
882
889
(
2018
).
171.
F.-R.
Liu
,
W.-M.
Zhang
,
L.-C.
Zhao
,
H.-X.
Zou
,
T.
Tan
,
Z.-K.
Peng
, and
G.
Meng
, “
Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates
,”
Appl. Energy
257
,
114034
(
2020
).
172.
S. K.
Al Nuaimi
,
V. C.
Meesala
, and
M. R.
Hajj
, “
Phenomenological model of piezoelectric energy harvesting from galloping oscillations
,”
Appl. Phys. Lett.
115
,
193701
(
2019
).
173.
A. H.
Alhadidi
and
M. F.
Daqaq
, “
A broadband bi-stable flow energy harvester based on the wake-galloping phenomenon
,”
Appl. Phys. Lett.
109
,
033904
(
2016
).
174.
K.
Yang
,
J.
Wang
, and
D.
Yurchenko
, “
A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting
,”
Appl. Phys. Lett.
115
,
193901
(
2019
).
175.
L.
Zhao
, “
Synchronization extension using a bistable galloping oscillator for enhanced power generation from concurrent wind and base vibration
,”
Appl. Phys. Lett.
116
,
053904
(
2020
).
176.
K.
Yang
,
T.
Qiu
,
J.
Wang
, and
L.
Tang
, “
Magnet-induced monostable nonlinearity for improving the VIV-galloping-coupled wind energy harvesting using combined cross-sectioned bluff body
,”
Smart Mater. Struct.
29
,
07LT01
(
2020
).
177.
X.
Jiang
,
L.
Li
,
C.
Lu
 et al, “
Rotational speed sensor based on the magnetoelectric effect of composite FeSiB/Pb(Zr,Ti)O3
,”
Rev. Sci. Instrum.
92
,
095009
(
2021
).
178.
H.
Zhou
,
C.
Xu
,
C.
Lu
,
X.
Jiang
 et al, “
Investigation of transient magnetoelectric response of magnetostrictive/piezoelectric composite applicable for lightning current sensing
,”
Sens. Actuator, A
329
,
112789
(
2021
).
179.
C.
Lu
,
R.
Zhu
,
F.
Yu
,
X.
Jiang
 et al, “
Gear rotational speed sensor based on FeCoSiB/Pb(Zr,Ti)O3 magnetoelectric composite
,”
Measurement
168
,
108409
(
2021
).
180.
Z.
Ou
,
C.
Lu
,
A.
Yang
 et al, “
Self-biased magnetoelectric current sensor based on SrFe12O19/FeCuNbSiB/PZT composite
,”
Sens. Actuator, A
290
,
8
13
(
2019
).
181.
R.
Naseer
,
H. L.
Dai
,
A.
Abdelkefi
, and
L.
Wang
, “
Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics
,”
Appl. Energy
203
,
142
153
(
2017
).
182.
J.
Cao
,
W.
Wang
,
S.
Zhou
,
D. J.
Inman
, and
J.
Lin
, “
Nonlinear time-varying potential bistable energy harvesting from human motion
,”
Appl. Phys. Lett.
107
,
143904
(
2015
).
183.
S.
Zhou
,
J.
Cao
,
D. J.
Inman
,
J.
Lin
, and
D.
Li
, “
Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement
,”
J. Sound Vib.
373
,
223
235
(
2016
).
184.
Z.
Zhou
,
W.
Qin
, and
P.
Zhu
, “
A broadband quad-stable energy harvester and its advantages over bi-stable harvester: Simulation and experiment verification
,”
Mech. Syst. Signal Process.
84
,
158
168
(
2017
).
You do not currently have access to this content.