High throughput theoretical methods are increasingly used to identify promising photocatalytic materials for hydrogen generation from water as a clean source of energy. While most promising water splitting candidates require co-catalyst loading and electrical biasing, computational costs to predict them a priori become large. It is, therefore, important to identify bare, bias-free semiconductor photocatalysts with small initial hydrogen production rates, often in the range of tens of nanomoles per hour, as these can become highly efficient with further co-catalyst loading and biasing. Here, we report a sensitive hydrogen detection system suitable for screening new photocatalysts. The hydrogen evolution rate of the prototypical rutile TiO2 loaded with 0.3 wt. % Pt is detected to be 78.0 ± 0.8 µmol/h/0.04 g, comparable with the rates reported in the literature. In contrast, sensitivity to an ultralow evolution rate of 11.4 ± 0.3 nmol/h/0.04 g is demonstrated for bare polycrystalline TiO2 without electrical bias. Two candidate photocatalysts, ZnFe2O4 (18.1 ± 0.2 nmol/h/0.04 g) and Ca2PbO4 (35.6 ± 0.5 nmol/h/0.04 g) without electrical bias or co-catalyst loading, are demonstrated to be potentially superior to bare TiO2. This work expands the techniques available for sensitive detection of photocatalytic processes toward much faster screening of new candidate photocatalytic materials in their bare state.

1.
J.
Cook
,
N.
Oreskes
,
P. T.
Doran
,
W. R. L.
Anderegg
,
B.
Verheggen
,
E. W.
Maibach
,
J. S.
Carlton
,
S.
Lewandowsky
,
A. G.
Skuce
,
S. A.
Green
,
D.
Nuccitelli
,
P.
Jacobs
,
M.
Richardson
,
B.
Winkler
,
R.
Painting
, and
K.
Rice
, “
Consensus on consensus: A synthesis of consensus estimates on human-caused global warming
,”
Environ. Res. Lett.
11
,
048002
(
2016
).
2.
W. R. L.
Anderegg
,
J. W.
Prall
,
J.
Harold
, and
S. H.
Schneider
, “
Expert credibility in climate change
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
12107
12109
(
2010
).
3.
N.
Oreskes
, “
Beyond the ivory tower. The scientific consensus on climate change
,”
Science
306
,
1686
(
2004
).
4.
Annual energy outlook,
2021
.
5.
D.
Connolly
,
B. V.
Mathiesen
, and
I.
Ridjan
, “
A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system
,”
Energy
73
,
110
125
(
2014
).
6.
D.
Gielen
,
F.
Boshell
,
D.
Saygin
,
M. D.
Bazilian
,
N.
Wagner
, and
R.
Gorini
, “
The role of renewable energy in the global energy transformation
,”
Energy Strategy Rev.
24
,
38
50
(
2019
).
7.
Y.
Tachibana
,
L.
Vayssieres
, and
J. R.
Durrant
, “
Artificial photosynthesis for solar water-splitting
,”
Nat. Photonics
6
,
511
518
(
2012
).
8.
J. H.
Montoya
,
L. C.
Seitz
,
P.
Chakthranont
,
A.
Vojvodic
,
T. F.
Jaramillo
, and
J. K.
Nørskov
, “
Materials for solar fuels and chemicals
,”
Nat. Mater.
16
,
70
81
(
2017
).
9.
A.
Züttel
,
A.
Remhof
,
A.
Borgschulte
, and
O.
Friedrichs
, “
Hydrogen: The future energy carrier
,”
Philos. Trans. R. Soc., A
368
,
3329
3342
(
2010
).
10.
P. L.
Spath
and
M. K.
Mann
, “
Life cycle assessment of hydrogen production via natural gas steam reforming
,” No. NREL/TP-570-27637 (NREL,
2001
); available at https://www.nrel.gov/docs/fy01osti/27637.pdf.
11.
T.
Takata
and
K.
Domen
, “
Particulate photocatalysts for water splitting: Recent advances and future prospects
,”
ACS Energy Lett.
4
,
542
549
(
2019
).
12.
M.
Grätzel
, “
Photoelectrochemical cells
,”
Nature
414
,
338
344
(
2001
).
13.
A.
Fujishima
and
K.
Honda
, “
Electrochemical photolysis of water at a semiconductor electrode
,”
Nature
238
,
37
(
1972
).
14.
F. E.
Osterloh
, “
Inorganic materials as catalysts for photochemical splitting of water
,”
Chem. Mater.
20
,
35
54
(
2008
).
15.
B. A.
Pinaud
,
J. D.
Benck
,
L. C.
Seitz
,
A. J.
Forman
,
Z.
Chen
,
T. G.
Deutsch
,
B. D.
James
,
K. N.
Baum
,
G. N.
Baum
,
S.
Ardo
,
H.
Wang
,
E.
Miller
, and
T. F.
Jaramillo
, “
Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
,”
Energy Environ. Sci.
6
,
1983
2002
(
2013
).
16.
Y.
Xiong
,
Q. T.
Campbell
,
J.
Fanghanel
,
C. K.
Badding
,
H.
Wang
,
N. E.
Kirchner-Hall
,
M. J.
Theibault
,
I.
Timrov
,
J. S.
Mondschein
,
K.
Seth
,
R.
Katz
,
A. M.
Villarino
,
B.
Pamuk
,
M. E.
Penrod
,
M. M.
Khan
,
T.
Rivera
,
N. C.
Smith
,
X.
Quintana
,
P.
Orbe
,
C. J.
Fennie
,
S.
Asem-Hiablie
,
J. L.
Young
,
T. G.
Deutsch
,
M.
Cococcioni
,
V.
Gopalan
,
H. D.
Abruña
,
R. E.
Schaak
, and
I.
Dabo
, “
Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen
,”
Energy Environ. Sci.
14
,
2335
2348
(
2021
).
17.
M.-Y.
Xie
,
K.-Y.
Su
,
X.-Y.
Peng
,
R.-J.
Wu
,
M.
Chavali
, and
W.-C.
Chang
, “
Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2–ZnO under visible light
,”
J. Taiwan Inst. Chem. Eng.
70
,
161
167
(
2017
).
18.
Y.-H.
Pai
and
S.-Y.
Fang
, “
Preparation and characterization of porous Nb2O5 photocatalysts with CuO, NiO and Pt cocatalyst for hydrogen production by light-induced water splitting
,”
J. Power Sources
230
,
321
326
(
2013
).
19.
J. F.
Alvino
,
T.
Bennett
,
R.
Kler
,
R. J.
Hudson
,
J.
Aupoil
,
T.
Nann
,
V. B.
Golovko
,
G. G.
Andersson
, and
G. F.
Metha
, “
Apparatus for the investigation of high-temperature, high-pressure gas-phase heterogeneous catalytic and photo-catalytic materials
,”
Rev. Sci. Instrum.
88
,
054101
(
2017
).
20.
J. H.
Kim
,
J. H.
Kim
,
J.-W.
Jang
,
J. Y.
Kim
,
S. H.
Choi
,
G.
Magesh
,
J.
Lee
, and
J. S.
Lee
, “
Awakening solar water-splitting activity of ZnFe2O4 nanorods by hybrid microwave annealing
,”
Adv. Energy Mater.
5
,
1401933
(
2015
).
21.
R.
Dom
,
R.
Subasri
,
K.
Radha
, and
P. H.
Borse
, “
Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation
,”
Solid State Commun.
151
,
470
473
(
2011
).
22.
R.
Dom
,
R.
Subasri
,
N. Y.
Hebalkar
,
A. S.
Chary
, and
P. H.
Borse
, “
Synthesis of a hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using a rapid microwave irradiation method
,”
RSC Adv.
2
,
12782
12791
(
2012
).
23.
J.
Schneider
,
M.
Matsuoka
,
M.
Takeuchi
,
J.
Zhang
,
Y.
Horiuchi
,
M.
Anpo
, and
D. W.
Bahnemann
, “
Understanding TiO2 photocatalysis: Mechanisms and materials
,”
Chem. Rev.
114
,
9919
9986
(
2014
).
24.
G. N.
Schrauzer
and
T. D.
Guth
, “
Photolysis of water and photoreduction of nitrogen on titanium-dioxide
,”
J. Am. Chem. Soc.
99
,
7189
7193
(
1977
).
25.
D.
Hufschmidt
,
D.
Bahnemann
,
J. J.
Testa
,
C. A.
Emilio
, and
M. I.
Litter
, “
Enhancement of the photocatalytic activity of various TiO2 materials by platinisation
,”
J. Photochem. Photobiol., A
148
,
223
231
(
2002
).
26.
R.
Li
,
Y.
Weng
,
X.
Zhou
,
X.
Wang
,
Y.
Mi
,
R.
Chong
,
H.
Han
, and
C.
Li
, “
Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases
,”
Energy Environ. Sci.
8
,
2377
2382
(
2015
).
27.
F. G.
Santomauro
,
S.
Ahmadi
,
H.
Rensmo
,
D. L.
Fernandes
, and
J.
, “
Enhancement of UV photo-catalytic activity in greenly modified nano-TiO2
,”
Chem. Mater. Eng.
4
,
1
(
2016
).
28.
W.
Zhou
,
W.
Li
,
J.-Q.
Wang
,
Y.
Qu
,
Y.
Yang
,
Y.
Xie
,
K.
Zhang
,
L.
Wang
,
H.
Fu
, and
D.
Zhao
, “
Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst
,”
J. Am. Chem. Soc.
136
,
9280
9283
(
2014
).
29.
A. S.
Hainer
,
J. S.
Hodgins
,
V.
Sandre
,
M.
Vallieres
,
A. E.
Lanterna
, and
J. C.
Scaiano
, “
Photocatalytic hydrogen generation using metal-decorated TiO2: Sacrificial donors vs true water splitting
,”
ACS Energy Lett.
3
,
542
545
(
2018
).
30.
X.
Li
,
K.
Peng
,
H.
Chen
, and
Z.
Wang
, “
TiO2 nanoparticles assembled on kaolinites with different morphologies for efficient photocatalytic performance
,”
Sci. Rep.
8
,
11663
(
2018
).
31.
J.
Yang
,
D.
Wang
,
H.
Han
, and
C.
Li
, “
Roles of cocatalysts in photocatalysis and photoelectrocatalysis
,”
Acc. Chem. Res.
46
,
1900
1909
(
2013
).
32.
S.
Sato
and
J. M.
White
, “
Photodecomposition of water over Pt/TiO2 catalysts
,”
Chem. Phys. Lett.
72
,
83
86
(
1980
).
33.
K.
Domen
,
S.
Naito
,
M.
Soma
,
T.
Onishi
, and
K.
Tamaru
, “
Photocatalytic decomposition of water vapour on an NiO/SrTiO3 catalyst
,”
J. Chem. Soc., Chem. Commun.
1980
,
543
544
.
34.
K.
Sayama
,
K.
Mukasa
,
R.
Abe
,
Y.
Abe
, and
H.
Arakawa
, “
Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3/I shuttle redox mediator under visible light irradiation
,”
Chem. Commun.
2001
,
2416
2417
.
35.
M. P.
Kapoor
,
S.
Inagaki
, and
H.
Yoshida
, “
Novel zirconium- titanium phosphates mesoporous materials for hydrogen production by photoinduced water splitting
,”
J. Phys. Chem. B
109
,
9231
9238
(
2005
).
36.
Y. I.
Kim
,
S. J.
Atherton
,
E. S.
Brigham
, and
T. E.
Mallouk
, “
Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors
,”
J. Phys. Chem.
97
,
11802
11810
(
1993
).
37.
D.
Wang
,
Z.
Zou
, and
J.
Ye
, “
Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors
,”
Chem. Mater.
17
,
3255
3261
(
2005
).
38.
K.
Kobayakawa
,
A.
Teranishi
,
T.
Tsurumaki
,
Y.
Sato
, and
A.
Fujishima
, “
Photocatalytic activity of CuInS2 and CuIn5S8
,”
Electrochim. Acta
37
,
465
467
(
1992
).

Supplementary Material

You do not currently have access to this content.