Diffusion cells are devices made of donor and acceptor compartments (DC and AC), separated by a membrane. They are widely used in pharmaceutical, cosmetic, toxicology, and protective equipment tests (e.g., gloves) to measure the kinetics of permeants (molecules and nanoparticles) across biological membranes as the skin. However, rarely is the concentration of permeants in the AC measured in continuous or in real-time, and this limitation leads to significant discrepancies in the calculations of kinetic parameters that define the permeation mechanisms. In this study, a diffusion cell compatible with positron emission tomography was used to measure the permeation kinetics of nanoparticles across glove membranes. The technology allows for the measurement of nanoparticle concentration in real-time in the two compartments (DC and AC) and at a detection sensitivity several orders of magnitude higher compared with conventional spectroscopies, thus allowing a much more precise extraction of kinetic parameters. Ultra-small (<10 nm) gold nanoparticles were used as a model nanoparticle contaminant. They were radiolabeled, and their diffusion kinetics was measured in continuous through latex and nitrile polymer membranes. Permeation profiles were recorded at sub-nanomolar sensitivity and in real-time, thus allowing the high precision extraction of kinetic permeation parameters. The technology, methodology, and data extraction process developed in this work could be applied to measure in real-time the kinetics of diffusion of a whole range of potentially toxic molecules and nanoparticles across polymer membranes, including glove membranes.

1.
A. C.
Anselmo
and
S.
Mitragotri
,
Bioeng. Transl. Med.
4
(
3
),
e10143
(
2019
).
2.
M.
Wiszniewska
and
J.
Walusiak-Skorupa
,
Curr. Allergy Asthma Rep.
15
(
7
),
43
(
2015
).
3.
F.
Larese Filon
,
D.
Bello
,
J. W.
Cherrie
,
A.
Sleeuwenhoek
,
S.
Spaan
, and
D. H.
Brouwer
,
Int. J. Hyg. Environ. Health
219
(
6
),
536
544
(
2016
).
4.
D. H.
Brouwer
,
S.
Spaan
,
M.
Roff
,
A.
Sleeuwenhoek
,
I.
Tuinman
,
H.
Goede
,
B.
van Duuren-Stuurman
,
F. L.
Filon
,
D.
Bello
, and
J. W.
Cherrie
,
Int. J. Hyg. Environ. Health
219
(
6
),
503
512
(
2016
).
5.
J.
Cherrie
,
S.
Semple
, and
D.
Brouwer
, in
Protective Gloves for Occupational Use
, 2nd ed. (
CRC Press
,
2004
), pp.
229
253
.
6.
G. A.
Mellstrom
,
B.
Carlsson
, and
A.
Boman
, in
Protective Gloves for Occupational Use
(
CRC Press
,
Boca Raton
,
2005
), pp.
71
84
.
7.
BS EN 374-2, British-Adopted European Standard, Brussels, Belgium,
2015
, pp.
1
14
.
8.
BS EN 455-1, British-Adopted European Standard,
2012
, pp.
1
8
.
9.
ASTM International ASTM F739, ASTM International, West Conshohocken, USA,
2012
, pp.
1
10
.
10.
ASTM International ASTM F1383, ASTM International, West Conshohocken, USA,
2012
, pp.
1
13
.
11.
ISO 6529, International Organization for Standardization, Genève, Switzerland,
2013
, pp.
1
45
.
12.
J. R.
Heylings
, in
Topical Drug Bioavailability, Bioequivalence, and Penetration
, edited by
V. P.
Shah
,
H. I.
Maibach
, and
J.
Jenner
(
Springer
,
NY
,
2014
), pp.
69
80
.
13.
F.
Larese Filon
,
M.
Crosera
,
G.
Adami
,
M.
Bovenzi
,
F.
Rossi
, and
G.
Maina
,
Nanotoxicology
5
(
4
),
493
501
(
2011
).
14.
Evans Analytical Group,
2007
, Vol. 2018.
15.
EN 374-1, in Part 1: Terminology and performance requirements, European Commission, Brussels, Belgium,
2016
.
16.
EN 374-2, in Determination of resistance to penetration, European Commission, Brussels, Belgium,
2014
.
17.
EN 374-3, in Determination of resistance to permeation by chemicals, European Commission, Brussels, Belgium,
2003
.
18.
EN 374-4, in Determination of resistance to degradation by chemicals, European Commission, Brussels, Belgium,
2013
.
19.
E. C.
Dreaden
,
A. M.
Alkilany
,
X.
Huang
,
C. J.
Murphy
, and
M. A.
El-Sayed
,
Chem. Soc. Rev.
41
(
7
),
2740
2779
(
2012
).
20.
A. Z.
Wilczewska
,
K.
Niemirowicz
,
K. H.
Markiewicz
, and
H.
Car
,
Pharmacol. Rep.
64
(
5
),
1020
1037
(
2012
).
21.
A.
Sharma
,
A. K.
Goyal
, and
G.
Rath
,
J. Drug Targeting
26
(
8
),
617
632
(
2018
).
22.
L.
Golanski
,
A.
Guiot
,
F.
Rouillon
,
J.
Pocachard
, and
F.
Tardif
,
Hum. Exp. Toxicol.
28
(
6-7
),
353
359
(
2009
).
23.
L.
Vinches
,
C.
Peyrot
,
L.
Lemarchand
,
N.
Boutrigue
,
M.
Zemzem
,
K. J.
Wilkinson
,
S.
Hallé
, and
N.
Tufenkji
,
J. Phys.: Conf. Ser.
617
(
1
),
012030
(
2015
).
24.
J.
Park
,
B. K.
Kwak
,
Y.
Kim
, and
J.
Yi
,
J. Nanopart. Res.
13
(
7
),
3043
3049
(
2011
).
25.
A. C.
Anselmo
and
S.
Mitragotri
,
Bioeng. Transl. Med.
1
(
1
),
10
29
(
2016
).
26.
National Institute for Occupational Safety and Health Education and Information Division,
2018
, Vol. 2018.
27.
National Institutes of Health Office of Research Services Division of Occupational Health and Safety,
2014
, Vol. 2018.
28.
EU-OSHA, European Agency for Safety and Health at Work, Brussels, Belgium,
2009
.
29.
Z12885-12, in Exposure Control Program for Engineered Nanomaterials in Occupational Settings, Canadian Center for Occupational Health and Safety, Ottawa, Canada,
2012
.
30.
M. M.
Omar
,
M.
Laprise-Pelletier
,
P.
Chevallier
,
L.
Tuduri
, and
M.-A.
Fortin
,
Bioconjugate Chem.
32
(
4
),
729
745
(
2021
).
31.
D.
Cassano
,
S.
Pocoví-Martínez
, and
V.
Voliani
,
Bioconjugate Chem.
29
(
1
),
4
16
(
2018
).
32.
X.
Jiang
,
B.
Du
,
Y.
Huang
, and
J.
Zheng
,
Nano Today
21
,
106
125
(
2018
).
33.
B. H.
Kim
,
M. J.
Hackett
,
J.
Park
, and
T.
Hyeon
,
Chem. Mat.
26
(
1
),
59
71
(
2014
).
34.
M.
Yu
and
J.
Zheng
,
ACS Nano
9
(
7
),
6655
6674
(
2015
).
35.
K.
Zarschler
,
L.
Rocks
,
N.
Licciardello
,
L.
Boselli
,
E.
Polo
,
K. P.
Garcia
,
L.
De Cola
,
H.
Stephan
, and
K. A.
Dawson
,
Nanomed.-Nanotechnol. Biol. Med.
12
(
6
),
1663
1701
(
2016
).
36.
M.
Brust
,
M.
Walker
,
D.
Bethell
,
D. J.
Schiffrin
, and
R.
Whyman
,
J. Chem. Soc., Chem. Commun.
1994
(
7
),
801
802
.
40.
41.
P.
Dolez
,
L.
Vinches
,
K.
Wilkinson
,
P.
Plamondon
, and
T.
Vu-Khanh
,
J. Phys.: Conf. Ser.
304
,
012066
(
2011
).
42.
M. H.
Hussain
,
N. F.
Abu Bakar
,
A. N.
Mustapa
,
K.-F.
Low
,
N. H.
Othman
, and
F.
Adam
,
Nanoscale Res. Lett.
15
(
1
),
140
(
2020
).
43.
M. J.
Stevens
and
S. J.
Plimpton
,
Eur. Phys. J. B
2
(
3
),
341
345
(
1998
).
44.
Testa Analytical Solutions, Testa Analytical Solutions,
2020
.
45.
K.
Shameli
,
M. B.
Ahmad
,
S. D.
Jazayeri
,
S.
Sedaghat
,
P.
Shabanzadeh
,
H.
Jahangirian
,
M.
Mahdavi
, and
Y.
Abdollahi
,
Int. J. Mol. Sci.
13
(
6
),
6639
6650
(
2012
).
46.
P.
Dolez
,
L.
Vinches
,
G.
Perron
,
T.
Vu-Khanh
,
P.
Plamondo
,
G.
L’Espérance
,
K.
Wilkinson
,
Y.
Cloutier
,
C.
Dion
, and
G.
Truchon
, “
Development of a method of measuring nanoparticle penetration through protective glove materials under conditions simulating workplace use
” (
IRSST
, Quebec, Canada,
2013
); available at https://www.irsst.qc.ca/en/publications-tools/publication/i/100644/n/development-of-a-method-of-measuring-nanoparticle-penetration-through-protective-glove-materials-under-conditions-simulating-workplace-use-r-785.
47.
I.
Furuta
,
S.-I.
Kimura
, and
M.
Iwama
,
Polymer Handbook
(
John Wiley & Sons
,
2005
), pp.
V/1
V/7
.
48.
H. P.
Brown
,
Rubber Chem. Technol.
30
(
5
),
1347
1386
(
1957
).
49.
L.
Vinches
,
M.
Zemzem
,
S.
Hallé
,
C.
Peyrot
,
K. J.
Wilkinson
, and
N.
Tufenkji
,
J. Occup. Environ. Hyg.
14
(
7
),
D95
D101
(
2017
).
50.
M.
Létourneau
,
M.
Tremblay
,
L.
Faucher
,
D.
Rojas
,
P.
Chevallier
,
Y.
Gossuin
,
J.
Lagueux
, and
M.-A.
Fortin
,
J. Phys. Chem. B
116
(
44
),
13228
13238
(
2012
).
51.
L.
Vinches
,
M.
Zemzem
,
S.
Hallé
,
C.
Peyrot
,
K.
Wilkinson
, and
N.
Tufenkji
,
Int. J. Theor. Appl. Nanotechnol.
4
,
9
16
(
2016
).

Supplementary Material

You do not currently have access to this content.