Laser diodes (LDs) are used in a wide range of applications, such as optical wireless communications and LIDAR. To meet the demanding requirements of LDs for high accuracy and stability of the injection current, a high-precision, high stability LD driver with overvoltage protection is proposed. A novel structure based on enhanced Howland current source is described: composite topology enhanced Howland current source (CTEHCS), which has the advantages of high precision, high stability, and extensive regulation range. A 20-bit DAC and high-precision reference source are used to form a front-stage DAC circuit for precise and stable voltage reference. A closed-loop feedback calibration loop is applied to eliminate significantly the absolute errors and auxiliary calibrating of the effect of power operational amplifier on the temperature rise of critical devices. An innovative overvoltage protection circuit is designed for the load side of the CTEHCS, and the protection range can be flexibly set to 4/5/6 V to avoid damage to loads such as LDs. The noise performance, accuracy and stability, modulation bandwidth, nonlinear error, overvoltage protection performance, and turn-on and turn-off time of the experimental prototype are described in detail.

1.
T.
Koonen
, “
Indoor optical wireless systems: Technology, trends, and applications
,”
J. Lightwave Technol.
36
,
1459
1467
(
2017
).
2.
Z.
Cao
,
X.
Zhang
,
G.
Osnabrugge
,
J.
Li
,
I. M.
Vellekoop
, and
A. M. J.
Koonen
, “
Reconfigurable beam system for non-line-of-sight free-space optical communication
,”
Light: Sci. Appl.
8
,
69
(
2019
).
3.
F.
Zafar
,
M.
Bakaul
, and
R.
Parthiban
, “
Laser-diode-based visible light communication: Toward gigabit class communication
,”
IEEE Commun. Mag.
55
,
144
151
(
2017
).
4.
B.
Smith
,
B.
Hellman
,
A.
Gin
,
A.
Espinoza
, and
Y.
Takashima
, “
Single chip LIDAR with discrete beam steering by digital micromirror device
,”
Opt. Express
25
,
14732
14745
(
2017
).
5.
J.
Shemshad
,
S. M.
Aminossadati
, and
M. S.
Kizil
, “
A review of developments in near infrared methane detection based on tunable diode laser
,”
Sens. Actuators, B
171–172
,
77
92
(
2012
).
6.
H.
Huang
,
J.
Ni
,
H.
Wang
,
J.
Zhang
, and
G.
Wang
, “
A novel power stability drive system of semiconductor laser diode for high-precision measurement
,”
Meas. Control
52
,
462
472
(
2019
).
7.
N.
Wang
,
Z.
Li
,
Z.
Zhang
,
Q.
He
,
B.
Han
, and
Y.
Lu
, “
A 10-A high-precision dc current source with stability better than 0.1 ppm/h
,”
IEEE Trans. Instrum. Meas.
64
,
1324
1330
(
2014
).
8.
R.
Thomas
and
N.
Kjærgaard
, “
A digital feedback controller for stabilizing large electric currents to the ppm level for feshbach resonance studies
,”
Rev. Sci. Instrum.
91
,
034705
(
2020
).
9.
G.
Scandurra
,
G.
Cannatà
,
G.
Giusi
, and
C.
Ciofi
, “
Programmable, very low noise current source
,”
Rev. Sci. Instrum.
85
,
125109
(
2014
).
10.
P.
Arpaia
,
C.
Baccigalupi
, and
A.
Esposito
, “
Low-complexity voltage and current sources for large-scale quench detection of high-temperature superconducting cables
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
920
,
73
80
(
2019
).
11.
H.
Mu
,
L.
Geng
, and
J.
Liu
, “
A high precision constant current source applied in led driver
,” in
2011 Symposium on Photonics and Optoelectronics (SOPO)
(
IEEE
,
2011
), pp.
1
4
.
12.
T.
Dönsberg
,
T.
Poikonen
, and
E.
Ikonen
, “
Transconductance amplifier for optical metrology applications of light-emitting diodes
,”
IEEE Trans. Instrum. Meas.
69
,
3704
3710
(
2019
).
13.
M. S.
Taubman
,
T. L.
Myers
,
R. M.
Pratt
,
R. D.
Stahl
, and
B. D.
Cannon
, “
Precision control of multiple quantum cascade lasers for calibration systems
,”
Rev. Sci. Instrum.
85
,
014704
(
2014
).
14.
N.
Li
,
X.
Qiu
,
Y.
Wei
,
E.
Zhang
,
J.
Wang
,
C.
Li
,
Y.
Peng
,
J.
Wei
,
H.
Meng
,
G.
Wang
, and
Z.
Zang
, “
A portable low-power integrated current and temperature laser controller for high-sensitivity gas sensor applications
,”
Rev. Sci. Instrum.
89
,
103103
(
2018
).
15.
Q.
Yu
,
Z.
Liu
,
K.
Duan
,
X.
Liu
, and
Y.
Li
, “
Design of constant current source circuit for high stability fiber coupled semiconductor laser
,”
Laser Infrared
51
,
321
327
(
2021
).
16.
C.
Tan
,
S.
Liu
,
J.
Jia
, and
F.
Dong
, “
A wideband electrical impedance tomography system based on sensitive bioimpedance spectrum bandwidth
,”
IEEE Trans. Instrum. Meas.
69
,
144
154
(
2019
).
17.
V.
Grando Sirtoli
,
V.
Coelho Vincence
, and
P.
Bertemes-Filho
, “
Mirrored enhanced Howland current source with feedback control
,”
Rev. Sci. Instrum.
90
,
024702
(
2019
).
18.
S.
Liu
,
K.
Tang
,
X.
Feng
,
H.
Jin
,
F.
Gao
, and
Y.
Zheng
, “
Toward wearable healthcare: A miniaturized 3D imager with coherent frequency-domain photoacoustics
,”
IEEE Trans. Biomed. Circuits Syst.
13
,
1417
1424
(
2019
).
19.
D. S.
Batista
,
G. B.
Silva
,
F.
Granziera
,
M. C.
Tosin
,
D. L.
Gazzoni Filho
, and
L. F.
Melo
, “
Howland current source applied to magnetic field generation in a tri-axial Helmholtz coil
,”
IEEE Access
7
,
125649
125661
(
2019
).
20.
N.
Jiang
, “
A large current source with high accuracy and fast settling
,”
Analog Dialogue
52
,
8
11
(
2018
).
21.
N.
Wang
,
H.
Fang
,
H.
Lei
, and
D.
Ye
, “
Dual feedback based bipolar current source with high stability for driving voice coil motors in wide temperature ranges
,”
Rev. Sci. Instrum.
92
,
054708
(
2021
).
22.
R.
Wicaksono
,
M. R.
Baidillah
,
P. N.
Darma
,
A.
Inoue
,
H.
Tsuji
, and
M.
Takei
, “
Pocket electrical impedance tomography (p-EIT) system with wide impedance range buffer-mirrored current source (BMCS) with assist of filter-trained quasi-3-D method for functional gastric-shape imaging
,”
IEEE Trans. Instrum. Meas.
70
,
1
17
(
2021
).
23.
L.
Luo
,
j.
Hu
,
C.
Wang
, and
Z.
Liu
, “
Design of high-precision driving power and temperature control circuit for semiconductor laser
,”
Laser Technol.
41
,
200
204
(
2017
).
24.
M.
Egan
, “
Composite amplifiers, high output drive capability with precision
,”
Analog Dialogue
53
,
25
28
(
2019
).
25.
J.
Magnusson
,
R.
Saers
,
L.
Liljestrand
, and
G.
Engdahl
, “
Separation of the energy absorption and overvoltage protection in solid-state breakers by the use of parallel varistors
,”
IEEE Trans. Power Electron.
29
,
2715
2722
(
2013
).
26.
S.
Ma
,
W.
Shang
,
D.
Wang
,
M.
Zhang
,
B.
Zhu
,
K.
Yu
, and
Y.
Pan
, “
A reliable voltage clamping submodule based on SiC MOSFET for solid state switch
,”
Rev. Sci. Instrum.
92
,
024713
(
2021
).
27.
F.
Liu
,
W.
Liu
,
X.
Zha
,
H.
Yang
, and
K.
Feng
, “
Solid-state circuit breaker snubber design for transient overvoltage suppression at bus fault interruption in low-voltage DC microgrid
,”
IEEE Trans. Power Electron.
32
,
3007
3021
(
2016
).
28.
F.
Grumm
,
J.
Storjohann
,
A.
Lücken
,
M. F.
Meyer
,
M.
Schumann
, and
D.
Schulz
, “
Robust primary protection device for weight-optimized PEM fuel cell systems in high-voltage dc power systems of aircraft
,”
IEEE Trans. Ind. Electron.
66
,
5748
5758
(
2019
).
29.
K.
Ni
,
Y.
Liu
,
Z.
Mei
,
T.
Wu
,
Y.
Hu
,
H.
Wen
, and
Y.
Wang
, “
Electrical and electronic technologies in more-electric aircraft: A review
,”
IEEE Access
7
,
76145
76166
(
2019
).
30.
P.
Bertemes-Filho
,
A.
Felipe
,
V. C.
Vincence
 et al., “
High accurate Howland current source: Output constraints analysis
,”
Circuits Syst.
4
,
451
(
2013
).
31.
C.
Tan
,
Y.
Chen
,
Y.
Wu
,
Z.
Xiao
, and
F.
Dong
, “
A modular magnetic induction tomography system for low-conductivity medium imaging
,”
IEEE Trans. Instrum. Meas.
70
,
1
8
(
2021
).
32.
H.
Chandra
,
S.
Allen
,
S.
Oberloier
,
N.
Bihari
,
J.
Gwamuri
, and
J.
Pearce
, “
Open-source automated mapping four-point probe
,”
Materials
10
,
110
(
2017
).
33.
K.
Gurkan
,
B.
Akpinar
, and
A. A.
DİNDAR
, “
Implementation and performance analysis of remote inclination monitoring system
,”
Balkan J. Electr. Comput. Eng.
9
,
348
353
(
2021
).
34.
M.
Egan
, “
The 20-bit DAC is the easiest part of a 1-ppm-accurate precision voltage source
,”
Analog Dialogue
44
,
1
(
2010
).
35.
J.
Liu
,
C.-K.
Hsu
,
X.
Tang
,
S.
Li
,
G.
Wen
, and
N.
Sun
, “
Error-feedback mismatch error shaping for high-resolution data converters
,”
IEEE Trans. Circuits Syst.
66
,
1342
1354
(
2018
).
36.
M. S.
Taubman
, “
Low-noise high-performance current controllers for quantum cascade lasers
,”
Rev. Sci. Instrum.
82
,
064704
(
2011
).
You do not currently have access to this content.