Talbot–Lau x-ray interferometry is a refraction-based diagnostic that can map electron density gradients through phase-contrast methods. The Talbot–Lau x-ray deflectometry (TXD) diagnostics have been deployed in several high energy density experiments. To improve diagnostic performance, a monochromatic TXD was implemented on the Multi-Tera Watt (MTW) laser using 8 keV multilayer mirrors (Δθ/θ = 4.5%-5.6%). Copper foil and wire targets were irradiated at 1014–1015 W/cm2. Laser pulse length (∼10 to 80 ps) and backlighter target configurations were explored in the context of Moiré fringe contrast and spatial resolution. Foil and wire targets delivered increased contrast <30%. The best spatial resolution (<6 μm) was measured for foils irradiated 80° from the surface. Further TXD diagnostic capability enhancement was achieved through the development of advanced data postprocessing tools. The Talbot Interferometry Analysis (TIA) code enabled x-ray refraction measurements from the MTW monochromatic TXD. Additionally, phase, attenuation, and dark-field maps of an ablating x-pinch load were retrieved through TXD. The images show a dense wire core of ∼60 μm diameter surrounded by low-density material of ∼40 μm thickness with an outer diameter ratio of ∼2.3. Attenuation at 8 keV was measured at ∼20% for the dense core and ∼10% for the low-density material. Instrumental and experimental limitations for monochromatic TXD diagnostics are presented. Enhanced postprocessing capabilities enabled by TIA are demonstrated in the context of high-intensity laser and pulsed power experimental data analysis. Significant advances in TXD diagnostic capabilities are presented. These results inform future diagnostic technique upgrades that will improve the accuracy of plasma characterization through TXD.

1.
R. P.
Drake
, “
A journey through high-energy-density physics
,”
Nucl. Fusion
59
(
3
),
035001
(
2018
).
2.
F.
Pfeiffer
,
T.
Weitkamp
,
O.
Bunk
, and
C.
David
, “
Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources
,”
Nat. Phys.
2
(
4
),
258
261
(
2006
).
3.
A.
Momose
,
W.
Yashiro
,
Y.
Takeda
,
Y.
Suzuki
, and
T.
Hattori
, “
Phase tomography by X-ray Talbot interferometry for biological imaging
,”
Jpn. J. Appl. Phys., Part 1
45
(
6A
),
5254
5262
(
2006
).
4.
D.
Stutman
and
M.
Finkenthal
, “
Talbot-Lau x-ray interferometry for high energy density plasma diagnostic
,”
Rev. Sci. Instrum.
82
(
11
),
113508
(
2011
).
5.
M. P.
Valdivia
,
D.
Stutman
, and
M.
Finkenthal
, “
Moire deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV
,”
Rev. Sci. Instrum.
85
(
7
),
073702
(
2014
).
6.
M. P.
Valdivia
,
D.
Stutman
,
C.
Stoeckl
,
W.
Theobald
,
G. W.
Collins
 IV
,
V.
Bouffetier
,
M.
Vescovi
,
C.
Mileham
,
I. A.
Begishev
,
S. R.
Klein
,
R.
Melean
,
S.
Muller
,
J.
Zou
,
F.
Veloso
,
A.
Casner
,
F. N.
Beg
, and
S. P.
Regan
, “
Talbot-Lau x-ray deflectometer: Refraction-based HEDP imaging diagnostic
,”
Rev. Sci. Instrum.
92
,
065110
(
2021
) [
Proceedings of the 23rd Topical Conference on High-Temperature Plasma Diagnostics
].
7.
O.
Kafri
and
I.
Glatt
, “
Moire deflectometry: A ray deflection approach to optical testing
,”
Opt. Eng.
24
(
6
),
246944
(
1985
).
8.
M. P.
Valdivia
,
D.
Stutman
, and
M.
Finkenthal
, “
Single-shot Z eff dense plasma diagnostic through simultaneous refraction and attenuation measurements with a Talbot-Lau x-ray moiré deflectometer
,”
Appl. Opt.
54
(
10
),
2577
2583
(
2015
).
9.
M. P.
Valdivia
,
D.
Stutman
,
C.
Stoeckl
,
C.
Mileham
,
I. A.
Begishev
,
J.
Bromage
, and
S. P.
Regan
, “
Talbot-Lau x-ray deflectometry phase-retrieval methods for electron density diagnostics in high-energy density experiments
,”
Appl. Opt.
57
(
2
),
138
145
(
2018
).
10.
M. P.
Valdivia
,
D.
Stutman
,
C.
Stoeckl
,
W.
Theobald
,
C.
Mileham
,
I. A.
Begishev
,
J.
Bromage
, and
S. P.
Regan
, “
An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics
,”
Rev. Sci. Instrum.
87
(
2
),
023505
(
2016
).
11.
M. P.
Valdivia
,
D.
Stutman
,
C.
Stoeckl
,
C.
Mileham
,
J.
Zou
,
S.
Muller
,
K.
Kaiser
,
C.
Sorce
,
P. K.
Keiter
,
J. R.
Fein
,
M.
Trantham
,
R. P.
Drake
, and
S. P.
Regan
, “
Implementation of a Talbot–Lau x-ray deflectometer diagnostic platform for the OMEGA EP laser
,”
Rev. Sci. Instrum.
91
(
2
),
023511
(
2020
).
12.
M. P.
Valdivia
,
G. W.
Collins
 IV
,
F.
Conti
, and
F. N.
Beg
, “
Wire, hybrid, and laser-cut X-pinches as Talbot–Lau backlighters for electron density diagnostics
,”
Plasma Phys. Control Fusion
64
(
3
),
035011
(
2022
).
13.
M.
Vescovi
,
M. P.
Valdivia
,
F.
Veloso
,
D.
Stutman
, and
M.
Favre
, “
Implementation of Talbot–Lau x-ray deflectometry in the pulsed power environment using a copper X-pinch backlighter
,”
J. Appl. Phys.
127
(
20
),
203301
(
2020
).
14.
V.
Bouffetier
,
L.
Ceurvorst
,
M. P.
Valdivia
,
F.
Dorchies
,
S.
Hulin
,
T.
Goudal
,
D.
Stutman
, and
A.
Casner
, “
Proof-of-concept Talbot–Lau x-ray interferometry laser-driven K-alpha source
,”
Appl. Opt.
59
(
27
),
8380
8387
(
2020
).
15.
M. P.
Valdivia
,
C.
Stoeckl
,
C.
Mileham
,
I. A.
Begishev
,
W.
Theobald
,
M.
Vescovi
,
W.
Useche
,
S. P.
Regan
,
B.
Albertazzi
,
G.
Rigon
,
P.
Mabey
,
T.
Michel
,
S. A.
Pikuz
,
M.
Koenig
,
A.
Casner
, and
D.
Stutman
, “
X-ray backlighter requirements for refraction-based electron density diagnostics through Talbot-Lau deflectometry
,”
Rev. Sci. Instrum.
89
,
10G127
(
2018
).
16.
I. A.
Begishev
,
V.
Bagnoud
,
S. W.
Bahk
,
W. A.
Bittle
,
G.
Brent
,
R.
Cuffney
,
C.
Dorrer
,
D. H.
Froula
,
D.
Haberberger
,
C.
Mileham
, and
P. M.
Nilson
, “
Advanced laser development and plasma-physics studies on the multiterawatt laser
,”
Appl. Opt.
60
(
36
),
11104
(
2021
).
17.
S. C.
Bott
,
D. M.
Haas
,
R. E.
Madden
,
U.
Ueda
,
Y.
Eshaq
,
G. W.
Collins
 VI
,
K.
Gunasekera
,
D.
Mariscal
,
J.
Peebles
,
F. N.
Beg
,
M.
Mazarakis
,
K.
Struve
, and
R.
Sharpe
, “
250 kA compact linear transformer driver for wire array z-pinch loads
,”
Phys. Rev. Spec. Top. - Accel. Beams
14
(
5
),
050401
(
2011
).
18.
G.
Pérez-Callejo
,
V.
Bouffetier
,
L.
Ceurvorst
,
T.
Goudal
,
M. P.
Valdivia
,
D.
Stutman
, and
A.
Casner
, “
TIA: A forward model and analyzer for Talbot interferometry experiments of dense plasmas
,”
Phys. Plasmas
29
,
043901
(
2022
).
19.
C.
Stoeckl
 et al., “
Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA
,”
Phys. Plasmas
24
(
5
),
056304
(
2017
).
20.
S. A.
Pikuz
 et al., “
High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas (invited)
,”
Rev. Sci. Instrum.
68
(
1
),
740
(
1997
).
21.
Y.
Aglitskiy
 et al., “
High resolution monochromatic X-ray imaging system based on spherically bent crystals
,”
AIP Conf. Proc.
29
(
22
),
437
441
(
1997
).
22.
D. B.
Sinars
 et al., “
Monochromatic x-ray backlighting of wire-array z-pinch plasmas using spherically bent quartz crystals
,”
Rev. Sci. Instrum.
74
(
3
),
2202
(
2003
).
23.
J. A.
Koch
 et al., “
High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility
,”
Appl. Opt.
37
(
10
),
1784
(
1998
).
24.
X.
Cheng
,
B.
Tan
,
J.
Cheng
,
D.
Liu
,
J.
Mu
, and
Q.
Yang
, “
Laterally graded multilayer as x-ray mirror for the laser-induced plasma x- ray sources
,”
Proc. SPIE
10386
,
1038604
(
2017
).
25.
B.
Jones
 et al., “
Design of a multilayer mirror monochromatic x-ray imager for the accelerator
,”
Rev. Sci. Instrum.
75
(
10
),
4029
4032
(
2004
).
26.
B.
Jones
,
C.
Deeney
,
C. A.
Coverdale
,
C. J.
Meyer
, and
P. D.
LePell
, “
Multilayer mirror monochromatic self-emission x-ray imaging on the Z accelerator
,”
Rev. Sci. Instrum.
77
,
10E316
(
2006
).
27.
H.-S.
Park
 et al., “
High-resolution 17–75 keV backlighters for high energy density experiments
,”
Phys. Plasmas
15
(
7
),
072705
(
2008
).
28.
I. H.
Hutchinson
, “
Principles of plasma diagnostics: Second Edition
,”
Plasma Phys. Control Fusion
44
(
12
),
2603
(
2002
).
29.
R. F.
Smith
 et al., “
Picosecond x-ray laser interferometry of dense plasmas
,”
Phys. Rev. Lett.
89
(
6
),
065004
(
2002
).
30.
J.
Filevich
 et al., “
Picosecond-resolution soft-x-ray laser plasma interferometry
,”
Appl. Opt.
43
(
19
),
3938
3946
(
2004
).
31.
J.
Grava
 et al., “
Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry
,”
Phys. Rev. E
78
(
1
),
016403
(
2008
).
32.
T.
Weitkamp
, “
XWFP: An x-ray wavefront propagation software package for the IDL computer language
,”
Proc. SPIE
5536
,
181
189
(
2004
).
33.
M.
Hipp
, User Manual for IDEA 1.7, Vol. 57,
2003
.
34.
F.
Pfeiffer
 et al., “
Hard-X-ray dark-field imaging using a grating interferometer
,”
Nat. Mater.
7
(
2
),
134
137
(
2008
).
35.
T. A.
Shelkovenko
 et al., “
Hybrid X-pinch with conical electrodes
,”
Phys. Plasmas
17
(
11
),
112707
(
2010
).
36.
G. W.
Collins
,
M. P.
Valdivia
,
S. B.
Hansen
,
F.
Conti
,
L. C.
Carlson
,
D. A.
Hammer
,
A.
Elshafiey
,
J.
Narkis
, and
F. N.
Beg
, “
Investigation into the dynamics of laser-cut foil X-pinches and their potential use for high repetition rate operation
,”
Appl. Phys. Lett.
105
(
2
),
024101
(
2014
).
37.
G. W.
Collins
 et al., “
Direct comparison of wire, foil, and hybrid X-pinches on a 200 kA, 150 ns current driver
,”
J. Appl. Phys.
129
(
7
),
073301
(
2021
).
38.
S. A.
Pikuz
,
T. A.
Shelkovenko
, and
D. A.
Hammer
, “
X-pinch. Part I
,”
Plasma Phys. Rep.
41
(
4
),
291
342
(
2015
).
You do not currently have access to this content.