Hollow cathodes in electric thrusters normally use an external heater to raise the thermionic electron emitter to emission temperatures. These heaters are a potential single-point failure in the thruster and add a separate power supply to the power processing unit. Heaterless hollow cathodes are attractive for their compact size and potential higher reliability but have only been reliably demonstrated to date in small hollow cathodes capable of discharge currents below around 5 A. A new heaterless LaB6 hollow cathode has been developed that is capable of discharge currents from 5 to 50 A. The cathode configuration extends the gas feed tube at cathode potential part way into the emitting insert region of the cathode. A high-voltage Paschen discharge is struck from the tube to the keeper that heats the tube tip, which then efficiently heats the insert by radiation. This configuration eliminates the arcing observed in prior large heaterless designs that coupled the high-voltage Paschen discharge to the orifice plate or the insert itself. Discharge current–voltage characteristics show that the presence of the tube does not significantly perturb the insert-region plasma. Startup uses a simple 3 min ignition procedure, and voltage traces of the keeper discharge reveal that much of the present tube-radiator’s 100-to-150 W heating power comes from an intermediate thermionic discharge sustained by the tube during the transition between the Paschen discharge and LaB6 insert thermionic regime. This novel heating mechanism enables an unprecedented class of higher-current heaterless hollow cathodes for the next generation of high-power electric propulsion systems.

1.
D. M.
Goebel
,
R. M.
Watkins
, and
K. K.
Jameson
, “
Lanthanum hexaboride hollow cathodes for ion and Hall thrusters
,”
J. Propul. Power
23
,
552
558
(
2007
).
2.
G. C.
Soulas
, “
Status of hollow cathode heater development for the space station plasma contactor
,” in
AIAA-94-3309, 30th AIAA Joint Propulsion Conference
,
Indianapolis
,
27–29 June 1994
.
3.
W. G.
Tighe
,
K.
Freick
, and
K. R.
Chien
, “
Performance evaluation and life test of the XIPS hollow cathode heater
,” in
AIAA 2005-4066, 41st Joint Propulsion Conference
,
Tucson, AZ
,
10–13 July 2005
.
4.
L. M.
Lidsky
,
S. D.
Rothleder
,
D. J.
Rose
,
S.
Yoshikawa
,
C.
Michelson
, and
R. J.
Mackin
, Jr.
, “
Highly ionized hollow cathode discharge
,”
J. Appl. Phys.
33
,
2490
(
1962
).
5.
D.
Lev
and
L.
Appel
, “
Heaterless hollow cathode technology—a critical review
,” in
5th Space Propulsion Conference (SPC), SP2016_3125366
,
Rome, Italy
,
2–6 May 2016
.
6.
D. R.
Lev
,
I. G.
Mikellides
,
D.
Pedrini
 et al, “
Recent progress in research and development of hollow cathodes for electric propulsion
,”
Rev. Mod. Plasma Phys.
3
,
6
(
2019
).
7.
R. W.
Conversano
,
R. B.
Lobbia
,
T. V.
Kerber
,
K. C.
Tilley
,
D. M.
Goebel
,
S. W.
Reilly
, “
Performance characterization of a low-power magnetically shielded Hall thruster with an internally-mounted hollow cathode
,”
Plasma Sources Sci. Technol.
28
,
105011
(
2019
).
8.
G.
Becatti
,
R. W.
Conversano
, and
D. M.
Goebel
, “
Demonstration of 25,000 ignitions on a proto-flight compact heaterless lanthanum hexaboride hollow cathode
,”
Acta Astronaut.
178
,
181
191
(
2021
).
9.
A. J. N.
Daykin-Iliopoulos
,
I. O.
Golosnoy
,
S. B.
Gabriel
, and
F.
Bosi
, “
Characterization of a 30 A heaterless hollow cathode
,” in
IEPC-2019-802, 36th International Electric Propulsion Conference
,
Vienna, Austria
,
15–20 September 2019
.
10.
K.
Kojima
,
S.
Yokota
,
J.
Yamasaki
,
M.
Yonaha
,
T.
Kimura
,
Y.
Kawamata
and
M.
Yasui
, “
Plasma diagnostics in a high current hollow cathode
,”
Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Tech. Jpn.
17
,
90
95
(
2019
).
11.
D. M.
Goebel
and
A.
Payman
, U.S. Provisional patent CIT-8850-P,
7 July 2022
.
12.
J. D.
Cobine
,
Gaseous Conductors
(
Dover Publications
,
NY
,
1941
), p.
228
.
13.
D. M.
Goebel
,
G.
Becatti
,
I. G.
Mikellides
, and
A.
Lopez Ortega
, “
Plasma hollow cathodes
,”
J. Appl. Phys.
130
,
050902
(
2021
).
14.
D. M.
Goebel
and
E.
Chu
, “
High current lanthanum hexaboride hollow cathode for high power Hall thrusters
,”
J. Propul. Power
30
,
35
40
(
2014
).
15.
E.
Chu
and
D. M.
Goebel
, “
High-current lanthanum hexaboride hollow cathode for 10-to-50-kW Hall thrusters
,”
IEEE Trans. Plasma Sci.
40
,
2133
2144
(
2012
).
16.
G.
Becatti
and
D. M.
Goebel
, “
500-A LaB6 hollow cathode for high power electric thrusters
,”
Vacuum
198
,
110895
(
2022
).
17.
R. R.
Hofer
,
J. E.
Polk
,
M. J.
Sekerak
,
I. G.
Mikellides
,
H.
Kamhawi
,
T. R.
Sarver-Verhey
,
D. A.
Herman
, and
G.
Williams
, “
The 12.5 kW Hall effect rocket with magnetic shielding (HERMeS) for the asteroid redirect robotic mission
,” in
AIAA-2016-4825, 52nd AIAA/SAE/ASEE Joint Propulsion Conference
,
Salt Lake City, UT
,
25–27 July 2016
.
18.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion Ion and Hall Thrusters
,
John Wiley & Sons
,
NY
(
2008
).
19.
D. M.
Goebel
,
I. G.
Mikellides
,
J.
Young
, and
W. G.
Tighe
, “
Keeper wear mechanisms in the XIPS 25-cm neutralizer cathode assembly
,” in
IEPC-2009-153, 31st International Electric Propulsion Conference
,
University of Michigan, Ann Arbor, MI
,
20–24 September 2009
.
20.
D. M.
Goebel
,
K. K.
Jameson
,
R. M.
Watkins
,
I.
Katz
, and
I. G.
Mikellides
, “
Hollow cathode theory and modeling: I. Plasma characterization with miniature fast-scanning probes
,”
J. App. Phys.
98
(
11
),
113302
(
2005
).
21.
D. M.
Goebel
and
J. E.
Polk
, “
Lanthanum hexaboride hollow cathode for the asteroid redirect robotic mission 12.5 kW Hall Thrusters
,” in
IEPC-2015-43, 34rd International Electric Propulsion Conference
,
Kobe, Japan
,
4–6 July 2015
.
22.
S. J.
Hall
,
B. A.
Jorns
,
A. D.
Gallimore
,
H.
Kamhawi
,
T. W.
Haag
,
J. A.
Mackey
,
J. H.
Gilland
,
P. Y.
Peterson
, and
M. J.
Baird
, “
High-power performance of a 100-kW class nested Hall thruster
,” in
IEPC-2017-228, 35th International Electric Propulsion Conference
(
Electric Rocket Propulsion Society
,
Atlanta, GA
,
2017
).
23.
D. M.
Goebel
and
J. E.
Polk
, “
Lanthanum hexaboride hollow cathode performance and wear testing for the asteroid redirect mission Hall thruster
,” in
AIAA 2016-4835, 52nd Joint Propulsion Conference
,
Salt Lake City, UT
,
25–27 July 2016
.
24.
A.
Anders
, “
Cohesive energy rule for vacuum arcs
,” in
Emerging Applications of Vacuum-Arc-Produced Plasma, Ion and Electron Beams
, NATO Science Series, edited by
E.
Oks
and
I.
Brown
(
Springer
,
Dordrecht
,
2002
), Vol. 88.
25.
D. M.
Goebel
and
A. C.
Schneider
, “
High voltage breakdown and conditioning of carbon and molybdenum electrodes
,”
IEEE Trans. Plasma Sci.
33
,
1136
1148
(
2005
).
26.
E. K.
Storms
and
B. A.
Mueller
, “
A study of surface stoichiometry and thermionic emission using LaB6
,”
J. Appl. Phys.
50
(
5
),
3691
3698
(
1979
).
27.
E.
Storms
and
B.
Mueller
, “
Phase relationship, vaporization and thermodynamic properties of the lanthanum-boron system
,”
J. Chem. Phys.
82
,
51
(
1978
).
28.
D. L.
Jacobson
and
E. K.
Storms
, “
Work function measurement of lanthanum-boron compounds
,”
IEEE Trans. Plasma Sci.
6
,
191
199
(
1978
).
29.
D. B.
Langmuir
and
L.
Malter
, “
The rate of evaporation of tantalum
,”
Phys. Rev.
55
(
8
),
748
749
(
1939
).
30.
G.
Sary
,
L.
Garrigues
, and
J.-P.
Boeuf
, “
Hollow cathode modeling: I. A coupled plasma thermal two-dimensional model
,”
Plasma Sources Sci. Technol.
26
,
055007
(
2017
).
31.
P.
Guerrero
,
I. G.
Mikellides
,
J. E.
Polk
,
R.
Carmina Monreal
, and
D. I.
Meiron
, “
Hollow cathode thermal modelling and self-consistent plasma solution: Two step neutralization modelling
,” in
IEPC-2019-301, 36th International Electric Propulsion Conference
,
Vienna, Austria
,
15–20 September 2019
.
You do not currently have access to this content.