Temperature induced pressure drift in the diamond anvil cell (DAC) is a major issue in high-pressure high-temperature experiments. It is commonly acknowledged that these drifts originate from multiple factors, but no systematic descriptions have been made so far. By introducing an internal water-cooling system in the DAC, we have performed a systematic investigation into temperature induced pressure drifts to reveal the mechanism behind them and to find a proper experimental procedure to achieve minimal pressure variation in DAC’s heating experiment. It is revealed in this experiment that pressure variation during heating processes originates from multiple temperature related factors of the DAC. The variation itself can be considered as a rebalancing process of the compression forces on the sample chamber initiated by the disturbance caused by temperature elevation. It is possible to suppress pressure variation by maintaining the temperature of the DAC body at room temperature to ensure the consistency of compression on the sample chamber. At the same time, the best procedure for the heating experiments is to properly pre-heat the sample chamber equipped with the internal water-cooling system before performing the in situ measurements on the temperature-related properties at the pressurized and heated conditions. Our discovery provides a reliable procedure for the sample heating process in the DAC and helps resolve the complex mystery of the influence of the combination of pressure and temperature in high-pressure high-temperature experiments.

1.
A. W.
Lawson
and
T. Y.
Tang
,
Rev. Sci. Instrum.
21
(
9
),
815
(
1950
).
2.
J. C.
Jamieson
,
A. W.
Lawson
, and
N. D.
Nachtrieb
,
Rev. Sci. Instrum.
30
(
11
),
1016
1019
(
1959
).
3.
G. J.
Piermarini
and
C. E.
Weir
,
J. Res. Natl. Bur. Stand., Sect. A
66A
,
325
331
(
1962
).
4.
G. J.
Piermarini
,
S.
Block
, and
J. D.
Barnett
,
J. Appl. Phys.
44
(
12
),
5377
5382
(
1973
).
5.
S.
Klotz
,
J.-C.
Chervin
,
P.
Munsch
, and
G.
Le Marchand
,
J. Phys. D: Appl. Phys.
42
(
7
),
075413
(
2009
).
6.
R. A.
Forman
,
G. J.
Piermarini
,
J. D.
Barnett
, and
S.
Block
,
Science
176
(
4032
),
284
285
(
1972
).
7.
J. D.
Barnett
,
S.
Block
, and
G. J.
Piermarini
,
Rev. Sci. Instrum.
44
(
1
),
1
9
(
1973
).
8.
A.
Jayaraman
,
Rev. Mod. Phys.
55
(
1
),
65
(
1983
).
9.
L. c.
Ming
and
W. A.
Bassett
,
Rev. Sci. Instrum.
45
(
9
),
1115
1118
(
1974
).
10.
L.-G.
Liu
and
W. A.
Bassett
,
J. Geophys. Res.
80
(
26
),
3777
3782
, (
1975
).
11.
D.
Errandonea
,
S. G.
MacLeod
,
J.
Ruiz-Fuertes
,
L.
Burakovsky
,
M. I.
McMahon
,
C. W.
Wilson
,
J.
Ibañez
,
D.
Daisenberger
, and
C.
Popescu
,
J. Phys.: Condens. Matter
30
(
29
),
295402
(
2018
).
12.
R. S.
McWilliams
,
D. A.
Dalton
,
M. F.
Mahmood
, and
A. F.
Goncharov
,
Phys. Rev. Lett.
116
(
25
),
255501
(
2016
).
13.
L.
Miyagi
,
W.
Kanitpanyacharoen
,
S. V.
Raju
,
P.
Kaercher
,
J.
Knight
,
A.
MacDowell
,
H.-R.
Wenk
,
Q.
Williams
, and
E. Z.
Alarcon
,
Rev. Sci. Instrum.
84
(
2
),
025118
(
2013
).
14.
Z.
Jenei
,
H.
Cynn
,
K.
Visbeck
, and
W. J.
Evans
,
Rev. Sci. Instrum.
84
(
9
),
095114
(
2013
).
15.
S.
Pasternak
,
G.
Aquilanti
,
S.
Pascarelli
,
R.
Poloni
,
B.
Canny
,
M.-V.
Coulet
, and
L.
Zhang
,
Rev. Sci. Instrum.
79
(
8
),
085103
(
2008
).
16.
Y.
Meng
,
G.
Shen
, and
H. K.
Mao
,
J. Phys.: Condens. Matter
18
(
25
),
S1097
(
2006
).
17.
W. A.
Bassett
,
A. H.
Shen
,
M.
Bucknum
, and
I. M.
Chou
,
Rev. Sci. Instrum.
64
(
8
),
2340
2345
(
1993
).
18.
J.
Yang
,
M.
Li
,
H.
Zhang
, and
C.
Gao
,
Rev. Sci. Instrum.
82
(
4
),
045108
(
2011
).
19.
W. A.
Bassett
and
M. S.
Weathers
,
Physica B+C
139–140
,
900
902
(
1986
).
20.
N. J.
Hess
and
D.
Schiferl
,
J. Appl. Phys.
71
(
5
),
2082
2086
(
1992
).
21.
Q.
Wei
,
N.
Dubrovinskaia
, and
L.
Dubrovinsky
,
J. Appl. Phys.
110
(
4
),
043513
(
2011
).
22.
A.
Lacam
and
C.
Chateau
,
J. Appl. Phys.
66
(
1
),
366
372
(
1989
).
23.
F.
Datchi
,
R.
LeToullec
, and
P.
Loubeyre
,
J. Appl. Phys.
81
(
8
),
3333
3339
(
1997
).
24.
S. V.
Rashchenko
,
A.
Kurnosov
,
L.
Dubrovinsky
, and
K. D.
Litasov
,
J. Appl. Phys.
117
(
14
),
145902
(
2015
).
25.
N. J.
Hess
and
G. J.
Exarhos
,
High Pressure Res.
2
(
1
),
57
64
(
1989
).
26.
A. F.
Goncharov
,
S.
Sinogeikin
,
J. C.
Crowhurst
,
M.
Ahart
,
D.
Lakshtanov
,
V.
Prakapenka
,
J.
Bass
,
P.
Beck
,
S. N.
Tkachev
,
J. M.
Zaug
, and
Y.
Fei
,
High Pressure Res.
27
(
4
),
409
417
(
2007
).
27.
H. K.
Mao
,
P. M.
Bell
,
J. W.
Shaner
, and
D. J.
Steinberg
,
J. Appl. Phys.
49
(
6
),
3276
3283
(
1978
).
28.
A. D.
Chijioke
,
W. J.
Nellis
,
A.
Soldatov
, and
I. F.
Silvera
,
J. Appl. Phys.
98
(
11
),
114905
(
2005
).
29.
J. K.
Hinton
,
C.
Childs
,
D.
Smith
,
P. B.
Ellison
,
K. V.
Lawler
, and
A.
Salamat
,
Phys. Rev. B
102
(
18
),
184112
(
2020
).
30.
H. K.
Mao
,
J.
Xu
, and
P. M.
Bell
,
J. Geophys. Res.: Solid Earth
91
(
B5
),
4673
4676
, (
1986
).
31.
E.-C.
Xiao
,
J.
Li
,
J.
Wang
,
C.
Xing
,
M.
Guo
,
H.
Qiao
,
Q.
Wang
,
Z.-M.
Qi
,
G.
Dou
, and
F.
Shi
,
J. Materiomics
4
(
4
),
383
389
(
2018
).
You do not currently have access to this content.