A superfluid helium insert was developed for cryogenic microscopy of millimeter-sized specimens. An optical-interferometric position sensor, cryogenic objective mirror, and piezo-driven cryogenic stage were fixed to an insert holder that was immersed in superfluid helium. The single-component design stabilized the three-dimensional position of the sample, with root-mean-square deviations of (x, lateral) 0.33 nm, (y, lateral) 0.29 nm, and (z, axial) 0.25 nm. Because of the millimeter working range of the optical sensor, the working range of the sample under the active stabilization was (x, y) 5 mm and (z) 3 mm in superfluid helium at 1.8 K. The insert was used to obtain the millimeter-sized fluorescence image of cell nuclei at 1.8 K without a sample exchange.

1.
E.
Betzig
,
G. H.
Patterson
,
R.
Sougrat
,
O. W.
Lindwasser
,
S.
Olenych
,
J. S.
Bonifacino
,
M. W.
Davidson
,
J.
Lippincott-Schwartz
, and
H. F.
Hess
, “
Imaging intracellular fluorescent proteins at nanometer resolution
,”
Science
313
,
1642
(
2006
).
2.
S. T.
Hess
,
T. P. K.
Girirajan
, and
M. D.
Mason
, “
Ultra-high resolution imaging by fluorescence photoactivation localization microscopy
,”
Biophys. J.
91
,
4258
(
2006
).
3.
M. J.
Rust
,
M.
Bates
, and
X.
Zhuang
, “
Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
,”
Nat. Methods
3
,
793
(
2006
).
4.
R. E.
Thompson
,
D. R.
Larson
, and
W. W.
Webb
, “
Precise nanometer localization analysis for individual fluorescent probes
,”
Biophys. J.
82
,
2775
(
2002
).
5.
F.
Balzarotti
,
Y.
Eilers
,
K. C.
Gwosch
,
A. H.
Gynnå
,
V.
Westphal
,
F. D.
Stefani
,
J.
Elf
, and
S. W.
Hell
, “
Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
,”
Science
355
,
606
(
2017
).
6.
M.
Weber
,
M.
Leutenegger
,
S.
Stoldt
,
S.
Jakobs
,
T. S.
Mihaila
,
A. N.
Butkevich
, and
S. W.
Hell
, “
MINSTED fluorescence localization and nanoscopy
,”
Nat. Photonics
15
,
361
(
2021
).
7.
G.-W.
Li
and
X. S.
Xie
, “
Central dogma at the single-molecule level in living cells
,”
Nature
475
,
308
(
2011
).
8.
S. J.
Lord
,
H.-l. D.
Lee
, and
W. E.
Moerner
, “
Single-molecule spectroscopy and imaging of biomolecules in living cells
,”
Anal. Chem.
82
,
2192
(
2010
).
9.
W. E.
Moerner
and
M.
Orrit
, “
Illuminating single molecules in condensed matter
,”
Science
283
,
1670
(
1999
).
10.
A. M.
van Oijen
,
J.
Köhler
,
J.
Schmidt
,
M.
Müller
, and
G. J.
Brakenhoff
, “
3-dimensional super-resolution by spectrally selective imaging
,”
Chem. Phys. Lett.
292
,
183
(
1998
).
11.
A.
Bloeß
,
Y.
Durand
,
M.
Matsushita
,
H.
Van Dermeer
,
G. J.
Brakenhoff
, and
J.
Schmidt
, “
Optical far-field microscopy of single molecules with 3.4 nm lateral resolution
,”
J. Microsc.
205
,
76
(
2002
).
12.
S.
Weisenburger
,
D.
Boening
,
B.
Schomburg
,
K.
Giller
,
S.
Becker
,
C.
Griesinger
, and
V.
Sandoghdar
, “
Cryogenic optical localization provides 3D protein structure data with angstrom resolution
,”
Nat. Methods
14
,
141
(
2017
).
13.
T.
Furubayashi
,
K.
Motohashi
,
K.
Wakao
,
T.
Matsuda
,
I.
Kii
,
T.
Hosoya
,
N.
Hayashi
,
M.
Sadaie
,
F.
Ishikawa
,
M.
Matsushita
, and
S.
Fujiyoshi
, “
Three-dimensional localization of an individual fluorescent molecule with angstrom precision
,”
J. Am. Chem. Soc.
139
,
8990
(
2017
).
14.
L.
Wang
,
B.
Bateman
,
L. C.
Zanetti-Domingues
,
A. N.
Moores
,
S.
Astbury
,
C.
Spindloe
,
M. C.
Darrow
,
M.
Romano
,
S. R.
Needham
,
K.
Beis
,
D. J.
Rolfe
,
D. T.
Clarke
, and
M. L.
Martin-Fernandez
, “
Solid immersion microscopy images cells under cryogenic conditions with 12 nm resolution
,”
Commun. Biol.
2
,
74
(
2019
).
15.
P. D.
Dahlberg
,
S.
Saurabh
,
A. M.
Sartor
,
J.
Wang
,
P. G.
Mitchell
,
W.
Chiu
,
L.
Shapiro
, and
W. E.
Moerner
, “
Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key in Caulobacter
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
13937
(
2020
).
16.
T.
Furubayashi
,
K.
Ishida
,
H.
Kashida
,
E.
Nakata
,
T.
Morii
,
M.
Matsushita
, and
S.
Fujiyoshi
, “
Nanometer accuracy in cryogenic far-field localization microscopy of individual molecules
,”
J. Phys. Chem. Lett.
10
,
5841
(
2019
).
17.
S.
Nickell
,
C.
Kofler
,
A. P.
Leis
, and
W.
Baumeister
, “
A visual approach to proteomics
,”
Nat. Rev. Mol. Cell Biol.
7
,
225
(
2006
).
18.
R.
Zondervan
,
F.
Kulzer
,
M. A.
Kol'chenk
, and
M.
Orrit
, “
Photobleaching of rhodamine 6G in poly(vinyl alcohol) at the ensemble and single-molecule levels
,”
J. Phys. Chem. A
108
,
1657
(
2004
).
19.
T.
Hinohara
,
Y. I.
Hamada
,
I.
Nakamura
,
M.
Matsushita
, and
S.
Fujiyoshi
, “
Mechanical stability of a microscope setup working at a few kelvins for single-molecule localization
,”
Chem. Phys.
419
,
246
(
2013
).
20.
H.
Inagawa
,
Y.
Toratani
,
K.
Motohashi
,
I.
Nakamura
,
M.
Matsushita
, and
S.
Fujiyoshi
, “
Reflecting microscope system with a 0.99 numerical aperture designed for three-dimensional fluorescence imaging of individual molecules at cryogenic temperatures
,”
Sci. Rep.
5
,
12833
(
2015
).
21.
K.
Thurner
,
F. P.
Quacquarelli
,
P.-F.
Braun
,
C. D.
Savio
, and
K.
Karrai
, “
Fiber-based distance sensing interferometry
,”
Appl. Opt.
54
,
3051
(
2015
).
22.
E. F.
Burton
, “
Refractive indexes of helium I and II
,”
Nature
140
,
1015
(
1937
).
23.
M.
Fujiwara
,
T.
Ishii
,
K.
Ishida
,
Y.
Toratani
,
T.
Furubayashi
,
M.
Matsushita
, and
S.
Fujiyoshi
, “
Aberration-corrected cryogenic objective mirror with a 0.93 numerical aperture
,”
Appl. Phys. Lett.
115
,
033701
(
2019
).
24.
T.
Furubayashi
,
K.
Ishida
,
E.
Nakata
,
T.
Morii
,
K.
Naruse
,
M.
Matsushita
, and
S.
Fujiyoshi
, “
Cryogenic far-field fluorescence nanoscopy: Evaluation with DNA origami
,”
J. Phys. Chem. B
124
,
7525
(
2020
).

Supplementary Material

You do not currently have access to this content.