The ITER Collective Thomson scattering (CTS) diagnostic will measure the dynamics of fusion-born alpha particles in the burning ITER plasma by scattering a 1 MW 60 GHz gyrotron beam off fast-ion induced fluctuations in the plasma. The diagnostic will have seven measurement volumes across the ITER cross section and will resolve the alpha particle energies in the range from 300 keV to 3.5 MeV; importantly, the CTS diagnostic is the only diagnostic capable of measuring confined alpha particles for energies below ∼1.7 MeV and will also be sensitive to the other fast-ion populations. The temporal resolution is 100 ms, allowing the capture of dynamics on that timescale, and the typical spatial resolution is 10–50 cm. The development and design of the in-vessel and primary parts of the CTS diagnostic has been completed. This marks the beginning of a new phase of preparation to maximize the scientific benefit of the diagnostic, e.g., by investigating the capability to contribute to the determination of the fuel-ion ratio and the bulk ion temperature as well as integrating data analysis with other fast-ion and bulk-ion diagnostics.

1.
E. E.
Salpeter
,
Phys. Rev.
120
,
1528
(
1960
).
2.
H.
Bindslev
,
J. Atmos. Terr. Phys.
58
,
983
989
(
1996
).
3.
S. B.
Korsholm
 et al,
Nucl. Instrum. Methods Phys. Res., Sect. A
623
,
677
680
(
2010
).
4.
R.
Behn
 et al,
Phys. Rev. Lett.
62
,
2833
(
1989
).
5.
E. V.
Suvorov
 et al,
Plasma Phys. Controlled Fusion
37
,
1207
(
1995
).
6.
J. A.
Hoekzema
 et al,
Rev. Sci. Instrum.
68
,
275
(
1997
).
7.
H.
Bindslev
,
J. A.
Hoekzema
,
J.
Egedal
,
J. A.
Fessey
,
T. P.
Hughes
, and
J. S.
Machuzak
,
Phys. Rev. Lett.
83
,
3206
(
1999
).
8.
H.
Bindslev
 et al,
Phys. Rev. Lett.
97
,
205005
(
2006
).
9.
S. B.
Korsholm
 et al,
Rev. Sci. Instrum.
77
,
10E514
(
2006
).
10.
M.
Stejner
 et al,
Rev. Sci. Instrum.
83
,
10E307
(
2012
).
11.
S. K.
Nielsen
 et al,
Phys. Scr.
92
,
024001
(
2017
).
12.
F.
Meo
 et al,
Rev. Sci. Instrum.
79
,
10E501
(
2008
).
13.
M.
Salewski
 et al,
Nucl. Fusion
50
,
035012
(
2010
).
14.
M.
Stejner
 et al,
Plasma Phys. Controlled Fusion
59
,
075009
(
2017
).
15.
S. K.
Nielsen
 et al,
Plasma Phys. Controlled Fusion
57
,
035009
(
2015
).
16.
W.
Bin
 et al,
Rev. Sci. Instrum.
87
,
11E507
(
2016
).
17.
S.
Kubo
 et al,
Rev. Sci. Instrum.
81
,
10D535
(
2010
).
18.
M.
Nishiura
 et al,
Nucl. Fusion
54
,
023006
(
2014
).
19.
D.
Moseev
 et al,
Rev. Sci. Instrum.
90
,
013503
(
2019
).
20.
W. C.
Deng
 et al,
J. Instrum.
17
,
C02006
(
2022
).
21.
S. B.
Korsholm
 et al,
Phys. Rev. Lett.
106
,
165004
(
2011
).
22.
M.
Stejner
,
S. K.
Nielsen
,
H.
Bindslev
,
S. B.
Korsholm
, and
M.
Salewski
,
Plasma Phys. Controlled Fusion
53
,
065020
(
2011
).
23.

European Fusion Development Agreement.

24.
H.
Bindslev
,
F.
Meo
,
E. L.
Tsakadze
,
S. B.
Korsholm
, and
P.
Woskov
,
Rev. Sci. Instrum.
75
,
3598
(
2004
).
25.
F.
Meo
,
H.
Bindslev
,
S. B.
Korsholm
,
E. L.
Tsakadze
,
C. I.
Walker
,
P.
Woskov
, and
G.
Vayakis
,
Rev. Sci. Instrum.
75
,
3585
(
2004
).
26.
F.
Leipold
 et al,
Rev. Sci. Instrum.
80
,
093501
(
2009
).
27.
M.
Salewski
 et al,
Plasma Phys. Controlled Fusion
51
,
035006
(
2009
).
28.
M.
Salewski
,
L.-G.
Eriksson
,
H.
Bindslev
,
S. B.
Korsholm
,
F.
Leipold
,
F.
Meo
,
P. K.
Michelsen
, and
S. K.
Nielsen
,
Nucl. Fusion
49
,
025006
(
2009
).
29.
M.
Salewski
 et al,
Nucl. Fusion
51
,
083014
(
2011
).
30.

Consortium of Technical University of Denmark (DTU) and Instituto Superior Técnico (IST).

31.

F4E-FPA-393 Framework Partnership Agreement on Diagnostic Development and Design: LFS CTS.

32.
S. B.
Korsholm
 et al,
EPJ Web Conf.
203
,
03002
(
2019
).
33.
J.
Rasmussen
 et al,
Plasma Phys. Controlled Fusion
61
,
095002
(
2019
).
34.
A. W.
Larsen
 et al,
J. Instrum.
14
,
C11009
(
2019
).
35.
C. P.
Moeller
,
R.
Prater
,
A. C.
Riviere
,
N. R. G.
Ainsworth
,
A. N.
Dellis
, and
P. C.
Johnson
,
Plasma Phys. Fusion Technol.
EC-6
,
355
360
(
1987
).
36.
J.
Trieschmann
,
A. W.
Larsen
,
T.
Mussenbrock
, and
S. B.
Korsholm
,
Phys. Plasmas
28
,
082505
(
2021
).
37.
J.
Rasmussen
,
M.
Stejner
,
T.
Jensen
,
E. B.
Klinkby
,
S. B.
Korsholm
,
A. W.
Larsen
,
F.
Leipold
,
S. K.
Nielsen
, and
M.
Salewski
,
Nucl. Fusion
59
,
096051
(
2019
).
38.
M.
Salewski
 et al,
Nucl. Fusion
58
,
096019
(
2018
).
39.
M.
Nocente
 et al,
Nucl. Fusion
57
,
076016
(
2017
).
40.
41.
A.
Lopes
 et al,
Fusion Eng. Des.
134
,
22
28
(
2018
).
42.
A.
Lopes
 et al,
Fusion Eng. Des.
161
,
111994
(
2020
).
43.
A.
Chambon
 et al,
J. Instrum.
16
,
C12001
(
2021
).
44.
C.
Vidal
 et al,
Fusion Eng. Des.
140
,
123
132
(
2019
).
45.
V.
Infante
 et al,
Fusion Eng. Des.
123
,
663
668
(
2017
).
46.
D.
Rechena
,
V.
Infante
,
E.
Henriques
,
S. B.
Korsholm
,
A. W.
Larsen
,
B.
Gonçalves
,
A.
Vale
, and
R.
Luís
,
Fusion Eng. Des.
168
,
112454
(
2021
).
47.
D.
Rechena
,
V.
Infante
,
E.
Henriques
,
S. B.
Korsholm
,
A. W.
Larsen
,
B.
Gonçalves
,
A.
Vale
, and
R.
Luís
,
Fusion Eng. Des.
171
,
112593
(
2021
).
48.

ITER Remote Maintenance Management System, ITER_D_2FMAJY.

49.
S. B.
Korsholm
,
F.
Leipold
,
R. B.
Madsen
,
H.
Gutierrez
,
T.
Jensen
,
M.
Jessen
,
A. W.
Larsen
,
J.
Rasmussen
, and
M.
Salewski
,
Rev. Sci. Instrum.
92
,
033509
(
2021
).
50.

ITER Research Plan within the Staged Approach, ITR-18-003.

51.
M.
Stejner
 et al,
Nucl. Fusion
52
,
023011
(
2012
).
You do not currently have access to this content.