D-Pace has a Penning ion source that runs with helium for studies of α-particle production. We want to study its plasma properties as a function of varying operational parameters, which results in varied output ion beam characteristics. In order to diagnose the ion source plasma, a collisional-radiative code for helium to be used with optical emission spectroscopy measurements is developed. This has the advantage of being non-invasive, which allows for measurements using the emitted light from the plasma. This collisional-radiative code is shown to compare well with the Yacora on the Web model developed at IPP-Garching, and improves upon it with the addition of radiation trapping. Furthermore, the sensitivity of this model to the inclusion of additional excited state populations and non-Maxwellian electron energy distribution functions is investigated. It is shown that non-Maxwellian distributions can significantly affect spectroscopy measurements. This diagnostic is benchmarked to Langmuir probe measurements on the TRIUMF-licensed volume-cusp ion source to determine whether it can replicate the measured electron density and electron temperature as a function of varied operational parameters. The operational parameters are helium gas flow (10–40 SCCM), arc voltage (100–200 V), and arc current (1–5 A). The measured plasma properties, while different in absolute value, have similar trends for each operational parameter except when varying arc voltage. It is shown that this mismatch as a function of arc voltage is likely due to high energy non-Maxwellian electrons from the cathode sheath, which are not included within the collisional-radiative model.

2.
N.
Savard
,
A.
Groutso
,
S.
Melanson
,
D.
Potkins
, and
M.
Dehnel
, “
Trapping secondary electrons in E×B drift for an alpha generating penning ion source
,”
J. Phys.: Conf. Ser.
2244
(
1
),
012104
(
2022
).
3.
U.
Fantz
, “
Basics of plasma spectroscopy
,”
Plasma Sources Sci. Technol.
15
(
4
),
S137
(
2006
).
4.
K. L.
Junck
,
M. L.
Brake
, and
W. D.
Getty
, “
Optical emission spectroscopy of electron-cyclotron-resonance-heated helium mirror plasmas
,”
Plasma Chem. Plasma Process.
11
(
1
),
15
39
(
1991
).
5.
R. F.
Boivin
,
J. L.
Kline
, and
E. E.
Scime
, “
Electron temperature measurement by a helium line intensity ratio method in helicon plasmas
,”
Phys. Plasmas
8
(
12
),
5303
5314
(
2001
).
6.
R.
Fischer
and
V.
Dose
, “
Electron energy distribution reconstruction in low-pressure helium plasmas from optical measurements
,”
Plasma Phys. Controlled Fusion
41
,
1109
1123
(
1999
).
7.
T.
Fujimoto
, “
A collisional-radiative model for helium and its application to a discharge plasma
,”
J. Quant. Spectrosc. Radiat. Transfer
21
(
5
),
439
455
(
1979
).
8.
D.
Nishijima
and
E. M.
Hollmann
, “
Determination of the optical escape factor in the He I line intensity ratio technique applied for weakly ionized plasmas
,”
Plasma Phys. Controlled Fusion
49
(
6
),
791
802
(
2007
).
9.
W.
Lee
,
K.
Park
,
D.-H.
Kwon
, and
C.-H.
Oh
, “
Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma
,”
Phys. Plasmas
23
(
6
),
063516
(
2016
).
10.
K.
Shin
,
N.
Ohno
,
S.
Takamura
, and
T.
Nakano
, “
Comparison of He I line intensity ratio method and electrostatic probe for electron density and temperature measurements in NAGDIS-II
,”
Phys. Plasmas
13
(
1
),
013301
(
2006
).
11.
B.
Schweer
,
G.
Mank
,
A.
Pospieszczyk
,
B.
Brosda
, and
B.
Pohlmeyer
, “
Electron temperature and electron density profiles measured with a thermal He-beam in the plasma boundary of textor
,”
J. Nucl. Mater.
196-198
,
174
178
(
1992
).
12.
S.
Ma
,
J.
Howard
,
B. D.
Blackwell
, and
N.
Thapar
, “
Measurements of electron density and temperature in the H-1 heliac plasma by helium line intensity ratios
,”
Rev. Sci. Instrum.
83
(
3
),
033102
(
2012
).
13.
S.
Kajita
and
N.
Ohno
, “
Practical selection of emission lines of He I to determine the photon absorption rate
,”
Rev. Sci. Instrum.
82
(
2
),
023501
(
2011
).
14.
D.
Wünderlich
,
M.
Giacomin
,
R.
Ritz
, and
U.
Fantz
, “
Yacora on the web: Online collisional radiative models for plasmas containing H, H2 or He
,”
J. Quant. Spectrosc. Radiat. Transfer
240
,
106695
(
2020
).
15.
D-Pace, Inc.
, “
10 kW filament volume-cusp ion source
,” https://www.d-pace.com/?e=304.
16.
F. F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion
(
Plenum Press
,
2011
).
17.
V. A.
Godyak
,
V. P.
Meytlis
, and
H. R.
Strauss
, “
Tonks-Langmuir problem for a Bi-Maxwellian plasma
,”
IEEE Trans. Plasma Sci.
23
(
4
),
728
734
(
1995
).
18.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley-Interscience
,
2005
).
19.
D.
Pagano
,
C.
Gorse
, and
M.
Capitelli
, “
Modeling multicusp negative-ion sources
,”
IEEE Trans. Plasma Sci.
35
(
5
),
1247
1259
(
2007
).
20.
J.
Bretagne
,
G.
Delouya
,
M.
Capitelli
,
C.
Gorse
, and
M.
Bacal
, “
On electron energy distribution functions in low-pressure magnetic multicusp hydrogen discharges
,”
J. Phys. D: Appl. Phys.
19
(
7
),
1197
1211
(
1986
).
21.
J.
Komppula
and
O.
Tarvainen
, “
VUV diagnostics of electron impact processes in low temperature molecular hydrogen plasma
,”
Plasma Sources Sci. Technol.
24
(
4
),
045008
(
2015
).
22.
K.-B.
Chai
and
D.-H.
Kwon
, “
Optical emission spectroscopy and collisional-radiative modeling for low temperature ar plasmas
,”
J. Quant. Spectrosc. Radiat. Transfer
227
,
136
144
(
2019
).
23.
Welcome to Python, https://www.python.org/.
24.
L. A.
Kennedy
and
A. A.
Fridman
,
Plasma Physics and Engineering
(
Taylor & Francis
,
2004
).
25.
B.
Wolf
,
Handbook of Ion Sources
(
CRC Press
,
2020
).
26.
Y.
Ralchenko
,
R. K.
Janev
,
T.
Kato
,
D. V.
Fursa
,
I.
Bray
, and
F. J.
de Heer
, “
Electron-impact excitation and ionization cross sections for ground state and excited helium atoms
,”
At. Data Nucl. Data Tables
94
(
4
),
603
622
(
2008
).
27.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database.
28.
W.
Möller
, “
Plasma and surface modeling of the deposition of hydrogenated carbon films from low-pressure methane plasmas
,”
Appl. Phys. A: Solids Surf.
56
(
6
),
527
546
(
1993
).
29.
X.-M.
Zhu
,
Y.-K.
Pu
,
Y.
Celik
,
S.
Siepa
,
E.
Schüngel
,
D.
Luggenhölscher
, and
U.
Czarnetzki
, “
Possibilities of determining non-Maxwellian EEDFS from the OES line-ratios in low-pressure capacitive and inductive plasmas containing argon and krypton
,”
Plasma Sources Sci. Technol.
21
(
2
),
024003
(
2012
).
30.
M.
Otsuka
,
R.
Ikee
, and
K.
Ishii
, “
Optical escape factors and population densities for TPD-plasma
,”
J. Quant. Spectrosc. Radiat. Transfer
21
(
1
),
41
53
(
1979
).
31.
S.
Luisa Siepa
, “
Global collisional-radiative model for optical emission spectroscopy of argon and argon-containing plasmas
,”
Ph.D. thesis, Ruhr–University Bochum
,
2017
.
32.
K.
Behringer
and
U.
Fantz
, “
The influence of opacity on hydrogen excited-state population and applications to low-temperature plasmas
,”
New J. Phys.
2
,
323
(
2000
).
33.
N.
Savard
, “
Development and characterization of a Penning ion source using helium
,” Ph.D. thesis,
University of British Columbia
,
2022
.
34.
R.
Mewe
, “
Interpolation formulae for the electron impact excitation of ions in the H-, He-, Li-, and Ne-sequences
,”
Astron. Astrophys.
20
,
215
(
1972
).
You do not currently have access to this content.