We utilize a high-mobility double-gated graphene field-effect transistor to measure the accumulated charge created by positron annihilation in its back-gate. The device consists of an exfoliated graphene flake stacked between two hexagonal boron nitride flakes placed on a 1 cm2 substrate of 500 μm thick conducting p-doped Si capped by 285 nm-thick SiO2. The device is placed in close proximity to a 780 kBq 22Na positron source emitting a constant flux of positrons. During the measurement, positrons annihilate within the back-gate, kept floating using a low-capacitance relay. The accumulated positive charge capacitively couples to the graphene device and builds a positive voltage, detectable through a shift in the top-gate dependent graphene resistance characteristic. The shift in the position of the top-gate Dirac peak is then used for extracting the exact voltage buildup and quantitative evaluation of the accumulated charge. Reaching a positron current sensitivity of ∼1.2 fA/Hz, detected over 20 min, our results demonstrate the utility of two-dimensional layered materials as probes for charging dynamics of positrons in solids.

1.
S.
Basu
and
P.
Bhattacharyya
, “
Recent developments on graphene and graphene oxide based solid state gas sensors
,”
Sens. Actuators, B
173
,
1
21
(
2012
).
2.
S.
Rumyantsev
,
G.
Liu
,
M. S.
Shur
,
R. A.
Potyrailo
, and
A. A.
Balandin
, “
Selective gas sensing with a single pristine graphene transistor
,”
Nano Lett.
12
(
5
),
2294
2298
(
2012
).
3.
A. R.
Cadore
,
E.
Mania
,
A. B.
Alencar
,
N. P.
Rezende
,
S.
de Oliveira
,
K.
Watanabe
,
T.
Taniguchi
,
H.
Chacham
,
L. C.
Campos
, and
R. G.
Lacerda
, “
Enhancing the response of NH3 graphene-sensors by using devices with different graphene-substrate distances
,”
Sens. Actuators, B
266
,
438
446
(
2018
).
4.
F.
Schedin
,
A. K.
Geim
,
S. V.
Morozov
,
E. W.
Hill
,
P.
Blake
,
M. I.
Katsnelson
, and
K. S.
Novoselov
, “
Detection of individual gas molecules adsorbed on graphene
,”
Nat. Mater.
6
(
9
),
652
655
(
2007
).
5.
G. S.
Kulkarni
,
K.
Reddy
,
Z.
Zhong
, and
X.
Fan
, “
Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection
,”
Nat. Commun.
5
(
1
),
4376
(
2014
).
6.
G.
Chen
,
T. M.
Paronyan
, and
A. R.
Harutyunyan
, “
Sub-ppt gas detection with pristine graphene
,”
Appl. Phys. Lett.
101
(
5
),
053119
(
2012
).
7.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
K. L.
Shepard
, and
J.
Hone
, “
Boron nitride substrates for high-quality graphene electronics
,”
Nat. Nanotechnol.
5
(
10
),
722
726
(
2010
).
8.
S.
Kim
,
I.
Jo
,
D. C.
Dillen
,
D. A.
Ferrer
,
B.
Fallahazad
,
Z.
Yao
,
S. K.
Banerjee
, and
E.
Tutuc
, “
Direct measurement of the Fermi energy in graphene using a double-layer heterostructure
,”
Phys. Rev. Lett.
108
(
11
),
116404
(
2012
).
9.
J.
Güttinger
,
C.
Stampfer
,
S.
Hellmüller
,
F.
Molitor
,
T.
Ihn
, and
K.
Ensslin
, “
Charge detection in graphene quantum dots
,”
Appl. Phys. Lett.
93
(
21
),
212102
(
2008
).
10.
C.
Neumann
,
C.
Volk
,
S.
Engels
, and
C.
Stampfer
, “
Graphene-based charge sensors
,”
Nanotechnology
24
(
44
),
444001
(
2013
).
11.
W.
Wang
,
R.
Du
,
A.
Zafar
,
L.
He
,
W.
Zhao
,
Y.
Chen
,
J.
Lu
, and
Z.
Ni
, “
High-performance graphene-based electrostatic field sensor
,”
IEEE Electron Device Lett.
38
(
8
),
1136
1138
(
2017
).
12.
Y.
Tzeng
,
Y.-R.
Chen
,
P.-Y.
Li
,
C.-C.
Chang
, and
Y.-C.
Chu
, “
NV center charge state controlled graphene-on-diamond field effect transistor actions with multi-wavelength optical inputs
,”
IEEE Open J. Nanotechnol.
1
,
18
24
(
2020
).
13.
P.
Or
,
D.
Dribin
,
T. R.
Devidas
,
A.
Zalic
,
K.
Watanabe
,
T.
Taniguchi
,
S.
May-Tal Beck
,
G.
Ron
, and
H.
Steinberg
, “
Graphene-based positron charge sensor
,”
Appl. Phys. Lett.
113
(
15
),
154101
(
2018
).
14.
L.
Wang
,
I.
Meric
,
P. Y.
Huang
,
Q.
Gao
,
Y.
Gao
,
H.
Tran
,
T.
Taniguchi
,
K.
Watanabe
,
L. M.
Campos
,
D. A.
Muller
,
J.
Guo
,
P.
Kim
,
J.
Hone
,
K. L.
Shepard
, and
C. R.
Dean
, “
One-dimensional electrical contact to a two-dimensional material
,”
Science
342
(
6158
),
614
617
(
2013
).
15.
N.
Stander
,
B.
Huard
, and
D.
Goldhaber-Gordon
, “
Evidence for Klein tunneling in graphene p–n junctions
,”
Phys. Rev. Lett.
102
,
026807
(
2009
).
16.
F.
Tuomisto
and
I.
Makkonen
, “
Defect identification in semiconductors with positron annihilation: Experiment and theory
,”
Rev. Mod. Phys.
85
,
1583
1631
(
2013
).
17.
M. J.
Puska
and
R. M.
Nieminen
, “
Theory of positrons in solids and on solid surfaces
,”
Rev. Mod. Phys.
66
,
841
897
(
1994
).
You do not currently have access to this content.