We describe a scanning tunneling microscope (STM) that operates at magnetic fields up to 22 T and temperatures down to 80 mK. We discuss the design of the STM head, with an improved coarse approach, the vibration isolation system, and efforts to improve the energy resolution using compact filters for multiple lines. We measure the superconducting gap and Josephson effect in aluminum and show that we can resolve features in the density of states as small as 8 μeV. We measure the quantization of conductance in atomic size contacts and make atomic resolution and density of states images in the layered material 2H–NbSe2. The latter experiments are performed by continuously operating the STM at magnetic fields of 20 T in periods of several days without interruption.

1.
G.
Binnig
,
H.
Rohrer
,
C.
Gerber
, and
E.
Weibel
, “
Tunneling through a controllable vacuum gap
,”
Appl. Phys. Lett.
40
,
178
180
(
1982
).
2.
B.
Voigtlaender
,
Scanning Probe Microscopy
(
Springer-Verlag Berlin Heidelberg
,
2015
).
3.
R.
Wiesendanger
,
Scanning Probe Microscopy and Spectroscopy: Methods and Applications
(
Cambridge University Press
,
1994
).
4.
B.
Giambattista
,
A.
Johnson
,
R. V.
Coleman
,
B.
Drake
, and
P. K.
Hansma
, “
Charge-density waves observed at 4.2 K by scanning-tunneling microscopy
,”
Phys. Rev. B
37
,
2741
2744
(
1988
).
5.
M. H.
Hamidian
,
S. D.
Edkins
,
S. H.
Joo
,
A.
Kostin
,
H.
Eisaki
,
S.
Uchida
,
M. J.
Lawler
,
E.-A.
Kim
,
A. P.
Mackenzie
,
K.
Fujita
,
J.
Lee
, and
J. C. S.
Davis
, “
Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x
,”
Nature
532
,
343
347
(
2016
).
6.
H. F.
Hess
,
R. B.
Robinson
,
R. C.
Dynes
,
J. M.
Valles
, and
J. V.
Waszczak
, “
Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid
,”
Phys. Rev. Lett.
62
,
214
216
(
1989
).
7.
Ø.
Fischer
,
M.
Kugler
,
I.
Maggio-Aprile
,
C.
Berthod
, and
C.
Renner
, “
Scanning tunneling spectroscopy of high-temperature superconductors
,”
Rev. Mod. Phys.
79
,
353
419
(
2007
).
8.
H.
Suderow
,
I.
Guillamón
,
J. G.
Rodrigo
, and
S.
Vieira
, “
Imaging superconducting vortex cores and lattices with a scanning tunneling microscope
,”
Supercond. Sci. Technol.
27
,
063001
(
2014
).
9.
T.
Matsui
,
H.
Kambara
,
Y.
Niimi
,
K.
Tagami
,
M.
Tsukada
, and
H.
Fukuyama
, “
STS observations of Landau levels at graphite surfaces
,”
Phys. Rev. Lett.
94
,
226403
(
2005
).
10.
S.
Jeon
,
B. B.
Zhou
,
A.
Gyenis
,
B. E.
Feldman
,
I.
Kimchi
,
A. C.
Potter
,
Q. D.
Gibson
,
R. J.
Cava
,
A.
Vishwanath
, and
A.
Yazdani
, “
Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2
,”
Nat. Mater.
13
,
851
856
(
2014
).
11.
D.
Aoki
,
K.
Ishida
, and
J.
Flouquet
, “
Review of U-based ferromagnetic superconductors: Comparison between UGe2, URhGe, and UCoGe
,”
J. Phys. Soc. Jpn.
88
,
022001
(
2019
).
12.
J. M.
Lu
,
O.
Zheliuk
,
I.
Leermakers
,
N. F. Q.
Yuan
,
U.
Zeitler
,
K. T.
Law
, and
J. T.
Ye
, “
Evidence for two-dimensional Ising superconductivity in gated MoS2
,”
Science
350
,
1353
1357
(
2015
).
13.
Y.
Saito
,
Y.
Nakamura
,
M. S.
Bahramy
,
Y.
Kohama
,
J.
Ye
,
Y.
Kasahara
,
Y.
Nakagawa
,
M.
Onga
,
M.
Tokunaga
,
T.
Nojima
,
Y.
Yanase
, and
Y.
Iwasa
, “
Superconductivity protected by spin–valley locking in ion-gated MoS2
,”
Nat. Phys.
12
,
144
149
(
2016
).
14.
S.
Paschen
and
Q.
Si
, “
Quantum phases driven by strong correlations
,”
Nat. Rev. Phys.
3
,
9
26
(
2021
).
15.
C. R.
Ast
,
B.
Jäck
,
J.
Senkpiel
,
M.
Eltschka
,
M.
Etzkorn
,
J.
Ankerhold
, and
K.
Kern
, “
Sensing the quantum limit in scanning tunnelling spectroscopy
,”
Nat. Commun.
7
,
13009
(
2016
).
16.
J. G.
Rodrigo
,
H.
Suderow
, and
S.
Vieira
, “
On the use of STM superconducting tips at very low temperatures
,”
Eur. Phys. J. B
40
,
483
488
(
2004
).
17.
O.
Naaman
,
W.
Teizer
, and
R. C.
Dynes
, “
Fluctuation dominated Josephson tunneling with a scanning tunneling microscope
,”
Phys. Rev. Lett.
87
,
097004
(
2001
).
18.
W.
Tao
,
S.
Singh
,
L.
Rossi
,
J. W.
Gerritsen
,
B. L. M.
Hendriksen
,
A. A.
Khajetoorians
,
P. C. M.
Christianen
,
J. C.
Maan
,
U.
Zeitler
, and
B.
Bryant
, “
A low-temperature scanning tunneling microscope capable of microscopy and spectroscopy in a Bitter magnet at up to 34 T
,”
Rev. Sci. Instrum.
88
,
093706
(
2017
).
19.
Y. J.
Song
,
A. F.
Otte
,
V.
Shvarts
,
Z.
Zhao
,
Y.
Kuk
,
S. R.
Blankenship
,
A.
Band
,
F. M.
Hess
, and
J. A.
Stroscio
, “
Invited review article: A 10 mK scanning probe microscopy facility
,”
Rev. Sci. Instrum.
81
,
121101
(
2010
).
20.
S.
Misra
,
B. B.
Zhou
,
I. K.
Drozdov
,
J.
Seo
,
L.
Urban
,
A.
Gyenis
,
S. C. J.
Kingsley
,
H.
Jones
, and
A.
Yazdani
, “
Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields
,”
Rev. Sci. Instrum.
84
,
103903
(
2013
).
21.
U. R.
Singh
,
M.
Enayat
,
S. C.
White
, and
P.
Wahl
, “
Construction and performance of a dilution-refrigerator based spectroscopic-imaging scanning tunneling microscope
,”
Rev. Sci. Instrum.
84
,
013708
(
2013
).
22.
M.
Assig
,
M.
Etzkorn
,
A.
Enders
,
W.
Stiepany
,
C. R.
Ast
, and
K.
Kern
, “
A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields
,”
Rev. Sci. Instrum.
84
,
033903
(
2013
).
23.
A.
Roychowdhury
,
M. A.
Gubrud
,
R.
Dana
,
J. R.
Anderson
,
C. J.
Lobb
,
F. C.
Wellstood
, and
M.
Dreyer
, “
A 30 mK, 13.5 T scanning tunneling microscope with two independent tips
,”
Rev. Sci. Instrum.
85
,
043706
(
2014
).
24.
T.
Machida
,
Y.
Kohsaka
, and
T.
Hanaguri
, “
A scanning tunneling microscope for spectroscopic imaging below 90 mK in magnetic fields up to 17.5 T
,”
Rev. Sci. Instrum.
89
,
093707
(
2018
).
25.
S.-I.
Park
and
R. C.
Barrett
, in
Scanning Tunneling Microscopy
, Methods in Experimental Physics, edited by
J. A.
Stroscio
and
W. J.
Kaiser
(
Springer
,
1993
), ISBN: 978-0-12-475972-5.
26.
J.-F.
Ge
,
M.
Ovadia
, and
J. E.
Hoffman
, “
Achieving low noise in scanning tunneling spectroscopy
,”
Rev. Sci. Instrum.
90
,
101401
(
2019
).
27.
J. E.
Hoffman
, “
A search for alternative electronic order in the high temperature superconductor Bi2Sr2CaCu2O8+δ by scanning tunneling microscopy
,” Ph.D. thesis,
Cornell
,
2003
.
28.
F.
Martin-Vega
 et al, “
Soft real-time USB controlled feedback for scanning tunneling microscopy and spectroscopy: Application to 2H–NbSe2, WTe2, FeSe and Co3Sn3S2 at very low temperatures
” (unpublished).
29.
J. A.
Galvis
,
E.
Herrera
,
I.
Guillamón
,
J.
Azpeitia
,
R. F.
Luccas
,
C.
Munuera
,
M.
Cuenca
,
J. A.
Higuera
,
N.
Díaz
,
M.
Pazos
,
M.
García-Hernandez
,
A.
Buendía
,
S.
Vieira
, and
H.
Suderow
, “
Three axis vector magnet set-up for cryogenic scanning probe microscopy
,”
Rev. Sci. Instrum.
86
,
013706
(
2015
).
30.
H.
Suderow
,
I.
Guillamón
, and
S.
Vieira
, “
Compact very low temperature scanning tunneling microscope with mechanically driven horizontal linear positioning stage
,”
Rev. Sci. Instrum.
82
,
033711
(
2011
).
31.
J. G.
Rodrigo
,
H.
Suderow
,
S.
Vieira
,
E.
Bascones
, and
F.
Guinea
, “
Superconducting nanostructures fabricated with the scanning tunnelling microscope
,”
J. Phys.: Condens. Matter
16
,
R1151
R1182
(
2004
).
32.
E.
Herrera
,
V.
Barrena
,
I.
Guillamón
,
J. A.
Galvis
,
W. J.
Herrera
,
J.
Castilla
,
D.
Aoki
,
J.
Flouquet
, and
H.
Suderow
, “
1D charge density wave in the hidden order state of URu2Si2
,”
Commun. Phys.
4
,
98
(
2021
).
33.
See https://www.ecocsorb.eu/Eccosorb.html for information about Eccosorb.
34.
Commissioning note by Oxford Instruments, https://www.oxinst.com/news/oxford-instruments-commissions-22-tesla-superconducting-magnet-system/;
R.
Álvarez Montoya
,
S.
Delgado
,
J.
Castilla
,
J.
Navarrete
,
N.
Díaz Contreras
,
J. R.
Marijuán
,
V.
Barrena
,
I.
Guillamùn
, and
H.
Suderow
, “
Methods to simplify cooling of liquid helium cryostats,
Hardware X
5
,
e00058
(
2019
)
35.
I.
Guillamón
,
H.
Suderow
,
S.
Vieira
, and
P.
Rodiere
, “
Scanning tunneling spectroscopy with superconducting tips of Al
,”
Physica C
468
,
537
542
(
2008
), part of the Special Issue: Proceedings of the Fifth International Conference on Vortex Matter in Nanostructured Superconductors.
36.
J.
Schwenk
,
S.
Kim
,
J.
Berwanger
,
F.
Ghahari
,
D.
Walkup
,
M. R.
Slot
,
S. T.
Le
,
W. G.
Cullen
,
S. R.
Blankenship
,
S.
Vranjkovic
,
H. J.
Hug
,
Y.
Kuk
,
F. J.
Giessibl
, and
J. A.
Stroscio
, “
Achieving μeV tunneling resolution in an in-operando scanning tunneling microscopy, atomic force microscopy, and magnetotransport system for quantum materials research
,”
Rev. Sci. Instrum.
91
,
071101
(
2020
).
37.
A.
Lukashenko
and
A. V.
Ustinov
, “
Improved powder filters for qubit measurements
,”
Rev. Sci. Instrum.
79
,
014701
(
2008
).
38.
K.
Bladh
,
D.
Gunnarsson
,
E.
Hürfeld
,
S.
Devi
,
C.
Kristoffersson
,
B.
Smålander
,
S.
Pehrson
,
T.
Claeson
,
P.
Delsing
, and
M.
Taslakov
, “
Comparison of cryogenic filters for use in single electronics experiments
,”
Rev. Sci. Instrum.
74
,
1323
1327
(
2003
).
39.
F. P.
Milliken
,
J. R.
Rozen
,
G. A.
Keefe
, and
R. H.
Koch
, “
50 Ω characteristic impedance low-pass metal powder filters
,”
Rev. Sci. Instrum.
78
,
024701
(
2007
).
40.
M.
Thalmann
,
H.-F.
Pernau
,
C.
Strunk
,
E.
Scheer
, and
T.
Pietsch
, “
Comparison of cryogenic low-pass filters
,”
Rev. Sci. Instrum.
88
,
114703
(
2017
).
41.
M.
Hunstig
, “
Piezoelectric inertia motors—A critical review of history, concepts, design, applications, and perspectives
,”
Actuators
6
,
7
(
2017
).
42.
T.
Roch
,
E. A.
Brener
,
J.-F.
Molinari
, and
E.
Bouchbinder
, “
Velocity-driven frictional sliding: Coarsening and steady-state pulse trains
,” arXiv:2104.13110 [cond-mat.soft] (
2021
).
43.
Z.
Liu
,
S.-M.
Zhang
,
J.-R.
Yang
,
J. Z.
Liu
,
Y.-L.
Yang
, and
Q.-S.
Zheng
, “
Interlayer shear strength of single crystalline graphite
,”
Acta Mech. Sin.
28
,
978
982
(
2012
).
44.
J.
Li
,
X.
Zhou
,
H.
Zhao
,
M.
Shao
,
P.
Hou
, and
X.
Xu
, “
Design and experimental performances of a piezoelectric linear actuator by means of lateral motion
,”
Smart Mater. Struct.
24
,
065007
(
2015
).
45.
See https://www.haeberli-ag.ch/de/ for information about small CuBe springs.
46.
K.
Michalczyk
and
P.
Bera
, “
A simple formula for predicting the first natural frequency of transverse vibrations of axially loaded helical springs
,”
J. Theor. Appl. Mech.
57
,
779
790
(
2019
).
47.
J.
Azpeitia
,
R.
Frisenda
,
M.
Lee
,
D.
Bouwmeester
,
W.
Zhang
,
F.
Mompean
,
H. S. J.
van der Zant
,
M.
García-Hernández
, and
A.
Castellanos-Gomez
, “
Integrating superconducting van der Waals materials on paper substrates
,”
Mater. Adv.
2
,
3274
3281
(
2021
).
48.
See https://eblproducts.com/ for information about piezotubes.
49.
S. H.
Pan
,
E. W.
Hudson
, and
J. C.
Davis
, “He3
refrigerator based very low temperature scanning tunneling microscope
,”
Rev. Sci. Instrum.
70
,
1459
1463
(
1999
).
50.
B.
Drevniok
,
W. M. P.
Paul
,
K. R.
Hairsine
, and
A. B.
McLean
, “
Methods and instrumentation for piezoelectric motors
,”
Rev. Sci. Instrum.
83
,
033706
(
2012
).
51.
O.
Pietzsch
,
A.
Kubetzka
,
D.
Haude
,
M.
Bode
, and
R.
Wiesendanger
, “
A low-temperature ultrahigh vacuum scanning tunneling microscope with a split-coil magnet and a rotary motion stepper motor for high spatial resolution studies of surface magnetism
,”
Rev. Sci. Instrum.
71
,
424
430
(
2000
).
52.
M.
den Heijer
,
V.
Fokkema
,
A.
Saedi
,
P.
Schakel
, and
M. J.
Rost
, “
Improving the accuracy of walking piezo motors
,”
Rev. Sci. Instrum.
85
,
055007
(
2014
).
53.
V.
Cherepanov
,
P.
Coenen
, and
B.
Voigtländer
, “
A nanopositioner for scanning probe microscopy: The KoalaDrive
,”
Rev. Sci. Instrum.
83
,
023703
(
2012
).
54.
P.
Wang
,
K.
Huang
,
J.
Sun
,
J.
Hu
,
H.
Fu
, and
X.
Lin
, “
Piezo-driven sample rotation system with ultra-low electron temperature
,”
Rev. Sci. Instrum.
90
,
023905
(
2019
).
55.
A.
Fente
,
W. R.
Meier
,
T.
Kong
,
V. G.
Kogan
,
S. L.
Bud’ko
,
P. C.
Canfield
,
I.
Guillamón
, and
H.
Suderow
, “
Influence of multiband sign-changing superconductivity on vortex cores and vortex pinning in stoichiometric high-Tc CaKFe4As4
,”
Phys. Rev. B
97
,
134501
(
2018
).
56.
A.
Fente
,
A.
Correa-Orellana
,
A. E.
Böhmer
,
A.
Kreyssig
,
S.
Ran
,
S. L.
Bud’ko
,
P. C.
Canfield
,
F. J.
Mompean
,
M.
García-Hernández
,
C.
Munuera
,
I.
Guillamón
, and
H.
Suderow
, “
Direct visualization of phase separation between superconducting and nematic domains in Co-doped CaFe2As2 close to a first-order phase transition
,”
Phys. Rev. B
97
,
014505
(
2018
).
57.
R. C.
Dynes
,
V.
Narayanamurti
, and
J. P.
Garno
, “
Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor
,”
Phys. Rev. Lett.
41
,
1509
1512
(
1978
).
58.
F.
Herman
and
R.
Hlubina
, “
Microscopic interpretation of the dynes formula for the tunneling density of states
,”
Phys. Rev. B
94
,
144508
(
2016
).
59.
M.
Ruby
,
B. W.
Heinrich
,
J. I.
Pascual
, and
K. J.
Franke
, “
Experimental demonstration of a two-band superconducting state for lead using scanning tunneling spectroscopy
,”
Phys. Rev. Lett.
114
,
157001
(
2015
).
60.
B. L.
Blackford
and
R. H.
March
, “
Temperature dependence of the energy gap in superconducting Al–Al2O3–Al tunnel junctions
,”
Can. J. Phys.
46
,
141
145
(
1968
).
61.
I.
Battisti
,
G.
Verdoes
,
K.
van Oosten
,
K. M.
Bastiaans
, and
M. P.
Allan
, “
Definition of design guidelines, construction, and performance of an ultra-stable scanning tunneling microscope for spectroscopic imaging
,”
Rev. Sci. Instrum.
89
,
123705
(
2018
).
62.
H.
le Sueur
and
P.
Joyez
, “
Room-temperature tunnel current amplifier and experimental setup for high resolution electronic spectroscopy in millikelvin scanning tunneling microscope experiments
,”
Rev. Sci. Instrum.
77
,
123701
(
2006
).
63.
N.
Moussy
,
H.
Courtois
, and
B.
Pannetier
, “
A very low temperature scanning tunneling microscope for the local spectroscopy of mesoscopic structures
,”
Rev. Sci. Instrum.
72
,
128
131
(
2001
).
64.
N. A.
Court
,
A. J.
Ferguson
, and
R. G.
Clark
, “
Energy gap measurement of nanostructured aluminium thin films for single Cooper-pair devices
,”
Supercond. Sci. Technol.
21
,
015013
(
2007
).
65.
J. C.
Cuevas
,
A.
Martín-Rodero
, and
A. L.
Yeyati
, “
Hamiltonian approach to the transport properties of superconducting quantum point contacts
,”
Phys. Rev. B
54
,
7366
7379
(
1996
).
66.
N.
Agraït
,
A. L.
Yeyati
, and
J. M.
van Ruitenbeek
, “
Quantum properties of atomic-sized conductors
,”
Phys. Rep.
377
,
81
279
(
2003
).
67.
M.
Ternes
,
W.-D.
Schneider
,
J.-C.
Cuevas
,
C. P.
Lutz
,
C. F.
Hirjibehedin
, and
A. J.
Heinrich
, “
Subgap structure in asymmetric superconducting tunnel junctions
,”
Phys. Rev. B
74
,
132501
(
2006
).
68.
H.
Suderow
,
E.
Bascones
,
W.
Belzig
,
F.
Guinea
, and
S.
Vieira
, “
Andreev scattering in nanoscopic junctions in a magnetic field
,”
Europhys. Lett.
50
,
749
755
(
2000
).
69.
E.
Scheer
,
P.
Joyez
,
D.
Esteve
,
C.
Urbina
, and
M. H.
Devoret
, “
Conduction channel transmissions of atomic-size aluminum contacts
,”
Phys. Rev. Lett.
78
,
3535
3538
(
1997
).
70.
H.
Huang
,
C.
Padurariu
,
J.
Senkpiel
,
R.
Drost
,
A. L.
Yeyati
,
J. C.
Cuevas
,
B.
Kubala
,
J.
Ankerhold
,
K.
Kern
, and
C. R.
Ast
, “
Tunnelling dynamics between superconducting bound states at the atomic limit
,”
Nat. Phys.
16
,
1227
1231
(
2020
).
71.
J.
Senkpiel
,
S.
Dambach
,
M.
Etzkorn
,
R.
Drost
,
C.
Padurariu
,
B.
Kubala
,
W.
Belzig
,
A. L.
Yeyati
,
J. C.
Cuevas
,
J.
Ankerhold
,
C. R.
Ast
, and
K.
Kern
, “
Single channel Josephson effect in a high transmission atomic contact
,”
Commun. Phys.
3
,
131
(
2020
).
72.
P.
Kot
,
R.
Drost
,
M.
Uhl
,
J.
Ankerhold
,
J. C.
Cuevas
, and
C. R.
Ast
, “
Microwave-assisted tunneling and interference effects in superconducting junctions under fast driving signals
,”
Phys. Rev. B
101
,
134507
(
2020
).
73.
B.
Jäck
,
J.
Senkpiel
,
M.
Etzkorn
,
J.
Ankerhold
,
C. R.
Ast
, and
K.
Kern
, “
Quantum Brownian motion at strong dissipation probed by superconducting tunnel junctions
,”
Phys. Rev. Lett.
119
,
147702
(
2017
).
74.
X.
Liu
,
Y. X.
Chong
,
R.
Sharma
, and
J. C. S.
Davis
, “
Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide
,”
Science
373
,
1447
1452
(
2021
).
75.
Y.
Wang
,
S. D.
Edkins
,
M. H.
Hamidian
,
J. C. S.
Davis
,
E.
Fradkin
, and
S. A.
Kivelson
, “
Pair density waves in superconducting vortex halos
,”
Phys. Rev. B
97
,
174510
(
2018
).
76.
D.
Cho
,
K. M.
Bastiaans
,
D.
Chatzopoulos
,
G. D.
Gu
, and
M. P.
Allan
, “
A strongly inhomogeneous superfluid in an iron-based superconductor
,”
Nature
571
,
541
545
(
2019
).
77.
H. F.
Hess
,
R. B.
Robinson
, and
J. V.
Waszczak
, “
Vortex-core structure observed with a scanning tunneling microscope
,”
Phys. Rev. Lett.
64
,
2711
2714
(
1990
).
78.
N.
Hayashi
,
T.
Isoshima
,
M.
Ichioka
, and
K.
Machida
, “
Low-lying quasiparticle excitations around a vortex core in quantum limit
,”
Phys. Rev. Lett.
80
,
2921
2924
(
1998
).
79.
A.
Fente
,
E.
Herrera
,
I.
Guillamón
,
H.
Suderow
,
S.
Mañas Valero
,
M.
Galbiati
,
E.
Coronado
, and
V. G.
Kogan
, “
Field dependence of the vortex core size probed by scanning tunneling microscopy
,”
Phys. Rev. B
94
,
014517
(
2016
).
80.
N.
Hayashi
,
M.
Ichioca
, and
K.
Machida
, “
Star-shaped local density of states around vortices in a type-II superconductor
,”
Phys. Rev. Lett.
77
,
4074
(
1996
).
81.
N.
Agraït
,
J. G.
Rodrigo
, and
S.
Vieira
, “
Conductance steps and quantization in atomic-size contacts
,”
Phys. Rev. B
47
,
12345
12348
(
1993
).
82.
J. I.
Pascual
,
J.
Méndez
,
J.
Gùmez-Herrero
,
A. M.
Barù
, and
N.
García
, “
Quantum contact in gold nanostructures by scanning tunneling microscopy
,”
Phys. Rev. Lett.
71
,
1852
(
1993
).
83.
G.
Rubio
,
N.
Agraït
, and
S.
Vieira
, “
Atomic-sized metallic contacts: Mechanical properties and electronic transport
,”
Phys. Rev. Lett.
76
,
2302
2305
(
1996
).
84.
J. C.
Cuevas
,
A.
Levy Yeyati
,
A.
Martín-Rodero
,
G.
Rubio Bollinger
,
C.
Untiedt
, and
N.
Agraït
, “
Evolution of conducting channels in metallic atomic contacts under elastic deformation
,”
Phys. Rev. Lett.
81
,
2990
2993
(
1998
).
85.
E.
Scheer
,
N.
Agraït
,
J. C.
Cuevas
,
A. L.
Yeyati
,
B.
Ludoph
,
A.
Martín-Rodero
,
G. R.
Bollinger
,
J. M.
van Ruitenbeek
, and
C.
Urbina
, “
The signature of chemical valence in the electrical conduction through a single-atom contact
,”
Nature
394
,
154
157
(
1998
).
86.
J. C.
Cuevas
,
A. L.
Yeyati
, and
A.
Martín-Rodero
, “
Microscopic origin of conducting channels in metallic atomic-size contacts
,”
Phys. Rev. Lett.
80
,
1066
1069
(
1998
).
87.
A. I.
Yanson
,
G. R.
Bollinger
,
H. E.
van den Brom
,
N.
Agraït
, and
J. M.
van Ruitenbeek
, “
Formation and manipulation of a metallic wire of single gold atoms
,”
Nature
395
,
783
785
(
1998
).
88.
O. Y.
Kolesnychenko
,
O. I.
Shklyarevskii
, and
H.
van Kempen
, “
Anomalous increase of the work function in metals due to adsorbed helium
,”
Physica B
284–288
,
1257
1258
(
2000
).
89.
O. Y.
Kolesnychenko
,
O. I.
Shklyarevskii
, and
H.
van Kempen
, “
Giant influence of adsorbed helium on field emission resonance measurements
,”
Phys. Rev. Lett.
83
,
2242
2245
(
1999
).
90.
B.
Yan
,
B.
Stadtmüller
,
N.
Haag
,
S.
Jakobs
,
J.
Seidel
,
D.
Jungkenn
,
S.
Mathias
,
M.
Cinchetti
,
M.
Aeschlimann
, and
C.
Felser
, “
Topological states on the gold surface
,”
Nat. Commun.
6
,
10167
(
2015
).
91.
J.
Fernández-Rossier
,
D.
Jacob
,
C.
Untiedt
, and
J. J.
Palacios
, “
Transport in magnetically ordered Pt nanocontacts
,”
Phys. Rev. B
72
,
224418
(
2005
).
92.
F.
Strigl
,
C.
Espy
,
M.
Bückle
,
E.
Scheer
, and
T.
Pietsch
, “
Emerging magnetic order in platinum atomic contacts and chains
,”
Nat. Commun.
6
,
6172
(
2015
).
93.
A.
Sokolov
,
C.
Zhang
,
E. Y.
Tsymbal
,
J.
Redepenning
, and
B.
Doudin
, “
Quantized magnetoresistance in atomic-size contacts
,”
Nat. Nanotechnol.
2
,
171
175
(
2007
).
94.
M. R.
Calvo
,
J.
Fernández-Rossier
,
J. J.
Palacios
,
D.
Jacob
,
D.
Natelson
, and
C.
Untiedt
, “
The Kondo effect in ferromagnetic atomic contacts
,”
Nature
458
,
1150
1153
(
2009
).
95.
J. M.
van Ruitenbeek
,
A.
Alvarez
,
I.
Piñeyro
,
C.
Grahmann
,
P.
Joyez
,
M. H.
Devoret
,
D.
Esteve
, and
C.
Urbina
, “
Adjustable nanofabricated atomic size contacts
,”
Rev. Sci. Instrum.
67
,
108
111
(
1996
).
96.
I.
Guillamon
,
H.
Suderow
,
F.
Guinea
, and
S.
Vieira
, “
Intrinsic atomic-scale modulations of the superconducting gap of 2H–NbSe2
,”
Phys. Rev. B
77
,
134505
(
2008
).
97.
I.
Guillamón
,
H.
Suderow
,
S.
Vieira
,
L.
Cario
,
P.
Diener
, and
P.
Rodière
, “
Superconducting density of states and vortex cores of 2H–NbS2
,”
Phys. Rev. Lett.
101
,
166407
(
2008
).
98.
A.
Soumyanarayanan
,
M. M.
Yee
,
Y.
He
,
J.
Van Wezel
,
D. J.
Rahn
,
K.
Rossnagel
,
E. W.
Hudson
,
M. R.
Norman
, and
J. E.
Hoffman
, “
Quantum phase transition from triangular to stripe charge order in NbSe2
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
1623
1627
(
2013
).
You do not currently have access to this content.