Enumeration and morphological characterization of circulating tumor cells (CTCs) can be useful in diagnosis and prognosis of metastatic cancer patients. The bio-ferrograph (BF) with its five flow channels, which was developed in the late 1990s for magnetic isolation of biological cells and tissue fragments from fluids, is a modification of the analytical ferrograph. Its use for isolation of rare CTCs from human whole blood (HWB) is a novel approach for the detection of cancer at a cellular level. The isolation process is facilitated by the interaction of specifically magnetized cells with a strong external magnetic field, yielding high recovery rates with no morphological alternation of cells that are isolated on a coverslip glass slide, thus allowing complementary microscopic, chemical, biological, and mechanical analyses. Here, a full mechanical and magnetostatic design of a novel high-throughput BF is presented. The system design is based on an optimized procedure for bio-ferrographic isolation of CTCs from HWB. It incorporates a semi-automated CTC separation system consisting of sample preparation, labeling, and staining; magnetic isolation; and system recovery. The design process was optimized based on experimental feasibility tests and finite element analyses. The novel bench-top system consists of 100 flow channels, allowing simultaneous analysis of multiple samples from 20 patients in each run, with the potential to become a decision-making tool for medical doctors when monitoring patients in a hospital setting. It opens a new route for early diagnosis, prognosis, and treatment of cancers, as well as other diseases, such as osteoarthritis.

1.
N.
Eliaz
, “
Wear particle analysis
,” in
ASM Handbook
, Friction, Lubrication, and Wear Technology Vol. 18, edited by
G. E.
Totten
(
ASM International
,
Materials Park, OH
,
2017
), pp.
1010
1031
.
2.
N.
Eliaz
and
K.
Hakshur
, “
Fundamentals of tribology and the use of ferrography and bio-ferrography for monitoring the degradation of natural and artificial joints
,” in
Degradation of Implant Materials
, edited by
N.
Eliaz
(
Springer
,
NY
,
2012
), pp.
253
302
.
3.
W. W.
Seifert
and
V. C.
Westcott
, “
A method for the study of wear particles in lubricating oil
,”
Wear
21
,
27
42
(
1972
).
4.
O.
Levi
and
N.
Eliaz
, “
Failure analysis and condition monitoring of an open-loop oil system using ferrography
,”
Tribol. Lett.
36
,
17
29
(
2009
).
5.
W. W.
Seifert
,
V. C.
Westcott
, and
J. B.
Desjardins
, “
Flow unit for ferrographic analysis
,” US patent 5714059 (
3 February 1998
).
6.
J. B.
Desjardins
,
W. W.
Seifert
,
R. S.
Wenstrup
, and
V. C.
Westcott
, “
Ferrographic apparatus
,” US patent 6303030 (
16 October 2001
).
7.
O.
Levi
,
A.
Shapira
,
B.
Tal
,
I.
Benhar
, and
N.
Eliaz
, “
Isolating epidermal growth factor receptor overexpressing carcinoma cells from human whole blood by bio-ferrography
,”
Cytometry, Part B
88
,
136
144
(
2015
).
8.
N.
Parkansky
,
B.
Alterkop
,
R. L.
Boxman
,
G.
Leitus
,
O.
Berkh
,
Z.
Barkay
,
Y.
Rosenberg
, and
N.
Eliaz
, “
Magnetic properties of carbon nano-particles produced by a pulsed arc submerged in ethanol
,”
Carbon
46
,
215
219
(
2008
).
9.
M.
Zborowski
,
C. B.
Fuh
,
R.
Green
,
N. J.
Baldwin
,
S.
Reddy
,
T.
Douglas
,
S.
Mann
, and
J. J.
Chalmers
, “
Immunomagnetic isolation of magnetoferritin-labeled cells in a modified ferrograph
,”
Cytometry
24
,
251
259
(
1996
).
10.
P.
Zhang
,
W. P.
Johnson
, and
R.
Rowland
, “
Bacterial tracking using ferrographic separation
,”
Environ. Sci. Technol.
33
,
2456
2460
(
1999
).
11.
P.
Zhang
and
W. P.
Johnson
, “
Rapid selective ferrographic enumeration of bacteria
,”
J. Magn. Magn. Mater.
194
,
267
274
(
1999
).
12.
P.
Johnson
,
P.
Zhang
,
M. E.
Fuller
,
T. D.
Scheibe
,
B. J.
Mailloux
,
T. C.
Onstott
,
M. F.
Deflaun
,
S. S.
Hubbard
,
J.
Radtke
,
W. P.
Kovacik
, and
W.
Holben
, “
Ferrographic tracking of bacterial transport in the field at the narrow channel focus area, Oyster, VA
,”
Environ. Sci. Technol.
35
,
182
191
(
2001
).
13.
W. P.
Johnson
,
P.
Zhang
,
P. M.
Gardner
,
M. E.
Fuller
, and
M. F.
DeFlaun
, “
Evidence for detachment of indigenous bacteria from aquifer sediment in response to arrival of injected bacteria
,”
Appl. Environ. Microbiol.
67
,
4908
4913
(
2001
).
14.
M. E.
Fuller
,
B. J.
Mailloux
,
P.
Zhang
,
S. H.
Streger
,
J. A.
Hall
,
S. N.
Vainberg
,
A. J.
Beavis
,
W. P.
Johnson
,
T. C.
Onstott
, and
M. F.
DeFlaun
, “
Field-scale evaluation of CFDA/SE staining coupled with multiple detection methods for assessing the transport of bacteria in situ
,”
FEMS Microbiol. Ecol.
37
,
55
66
(
2001
).
15.
M. F.
DeFlaun
,
M. E.
Fuller
,
P.
Zhang
,
W. P.
Johnson
,
B. J.
Mailloux
,
W. E.
Holben
,
W. P.
Kovacik
,
D. L.
Balkwill
, and
T. C.
Onstott
, “
Comparison of methods for monitoring bacterial transport in the subsurface
,”
J. Microbiol. Methods
47
,
219
231
(
2001
).
16.
P.
Zhang
,
W. P.
Johnson
,
T. D.
Scheibe
,
K.-H.
Choi
,
F. C.
Dobbs
, and
B. J.
Mailloux
, “
Extended tailing of bacteria following breakthrough at the narrow channel focus area, Oyster, Virginia
,”
Water Resour. Res.
37
,
2687
2698
, (
2001
).
17.
W. P.
Johnson
and
W. O.
McIntosh
, “
Tracking of injected and resident (previously injected) bacterial cells in groundwater using ferrographic capture
,”
Microbiol. Methods
54
,
153
164
(
2003
).
18.
L. A.
Drake
,
A. E.
Meyer
,
R. L.
Forsberg
,
R. E.
Baier
,
M. A.
Doblin
,
S.
Heinemann
,
W. P.
Johnson
,
M.
Koch
,
P. A.
Rublee
, and
F. C.
Dobbs
, “
Potential invasion of microorganisms and pathogens via ‘interior hull fouling’: Biofilms inside ballast water tanks
,”
Biol. Invasions
7
,
969
982
(
2005
).
19.
Y.
Tada
,
T.
Dohi
,
T.
Horiuchi
,
P. S.
Malchesky
, and
M.
Zborowski
, “
Study on analytical magnetic separation system of bacterial species
,”
J. Life Support Technol.
4
,
17
(
1991
).
20.
M.
Zborowski
,
P. S.
Malchesky
,
S. R.
Savon
,
R.
Green
,
G. S.
Hall
, and
Y.
Nosé
, “
Modification of ferrography method for analysis of lymphocytes and bacteria
,”
Wear
142
,
135
149
(
1991
).
21.
M.
Zborowski
,
P. S.
Malchesky
,
T.-F.
Jan
, and
G. S.
Hall
, “
Quantitative separation of bacteria in saline solution using lanthanide Er(III) and a magnetic field
,”
J. Gen. Microbiol.
138
,
63
68
(
1992
).
22.
M.
Zborowski
,
Y.
Tada
,
P. S.
Malchesky
, and
G. S.
Hall
, “
Dark-field microscopy analysis of the magnetic deposition of bacteria on a glass surface
,”
Colloids Surf., A
77
,
209
218
(
1993
).
23.
L. R.
Moore
,
M.
Zborowski
,
L.
Sun
, and
J. J.
Chalmers
, “
Lymphocyte fractionation using immunomagnetic colloid and a dipole magnet flow cell sorter
,”
J. Biochem. Biophys. Methods
37
,
11
33
(
1998
).
24.
K.
Melnik
,
J.
Sun
,
A.
Fleischman
,
S.
Roy
,
M.
Zborowski
, and
J. J.
Chalmers
, “
Quantification of magnetic susceptibility in several strains of Bacillus spores: Implications for separation and detection
,”
Biotechnol. Bioeng.
98
,
186
192
(
2007
).
25.
D.
Sumari
,
B. T.
Grimberg
,
D. A.
Blankenship
,
J.
Mugasa
,
K.
Mugittu
,
L.
Moore
,
P.
Gwakisa
, and
M.
Zborowski
, “
Application of magnetic cytosmear for the estimation of Plasmodium falciparum gametocyte density and detection of asexual stages in asymptomatic children
,”
Malar. J.
15
,
113
(
2016
).
26.
P. A.
Zimmerman
,
J. M.
Thomson
,
H.
Fujioka
,
W. E.
Collins
, and
M.
Zborowski
, “
Diagnosis of malaria by magnetic deposition microscopy
,”
Am. J. Trop. Med. Hyg.
74
,
568
572
(
2006
).
27.
S.
Karl
,
M.
David
,
L.
Moore
,
B. T.
Grimberg
,
P.
Michon
,
I.
Mueller
,
M.
Zborowski
, and
P. A.
Zimmerman
, “
Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission
,”
Malar. J.
7
,
66
(
2008
).
28.
J. S.
Ishay
,
Z.
Barkay
,
N.
Eliaz
,
M.
Plotkin
,
S.
Volynchik
, and
D. J.
Bergman
, “
Gravity orientation in social wasp comb cells (Vespinae) and the possible role of embedded minerals
,”
Naturwissenschaften
95
,
333
342
(
2008
).
29.
K.
Mendel
,
N.
Eliaz
,
I.
Benhar
,
D.
Hendel
, and
N.
Halperin
, “
Magnetic isolation of particles suspended in synovial fluid for diagnostics of natural joint chondropathies
,”
Acta Biomater.
6
,
4430
4438
(
2010
).
30.
K.
Hakshur
,
I.
Benhar
,
Y.
Bar-Ziv
,
N.
Halperin
,
D.
Segal
, and
N.
Eliaz
, “
The effect of hyaluronan injections into human knees on the number of bone and cartilage wear particles captured by bio-ferrography
,”
Acta Biomater.
7
,
848
857
(
2011
).
31.
D. M.
Meyer
,
A.
Tillinghast
,
N. C.
Hanumara
, and
A.
Franco
, “
Bio-ferrography to capture and separate polyethylene wear debris from hip simulator fluid and compared with conventional filter method
,”
J. Tribol.
128
,
436
441
(
2006
).
32.
J. J.
Elsner
,
Y.
Mezape
,
K.
Hakshur
,
M.
Shemesh
,
E.
Linder-Ganz
,
A.
Shterling
, and
N.
Eliaz
, “
Wear rate evaluation of a novel polycarbonate-urethane cushion form bearing for artificial hip joints
,”
Acta Biomater.
6
,
4698
4707
(
2010
).
33.
J. J.
Elsner
,
M.
Shemesh
,
Y.
Mezape
,
M.
Levenshtein
,
K.
Hakshur
,
A.
Shterling
,
E.
Linder-Ganz
, and
N.
Eliaz
, “
Long-term evaluation of a compliant cushion form acetabular bearing for hip joint replacement: A 20 million cycles wear simulation
,”
J. Orthop. Res.
29
,
1859
1866
(
2011
).
34.
B.
Fang
,
M.
Zborowski
, and
L. R.
Moore
, “
Detection of rare MCF-7 breast carcinoma cells from mixture of human peripheral leukocytes by magnetic deposition analysis
,”
Cytometry
36
,
294
302
(
1999
).
35.
P. B.
Turpen
, “
Isolation of cells using bioferrography
,”
Cytometry
42
,
324
(
2000
).
36.
O.
Levi
,
B.
Tal
,
S.
Hileli
,
A.
Shapira
,
I.
Benhar
,
P.
Grabov
, and
N.
Eliaz
, “
Optimization of EGFR high positive cell isolation procedure by design of experiments methodology
,”
Cytometry, Part B
88
,
338
347
(
2015
).
37.
D.
Svetlizky
,
O.
Levi
,
I.
Benhar
, and
N.
Eliaz
, “
Mechanical properties of bio-ferrography isolated cancerous cells studied by atomic force microscopy
,”
J. Mech. Behav. Biomed. Mater.
91
,
345
354
(
2019
).
38.
M.
Zborowski
and
J. J.
Chalmers
, “
Rare cell separation and analysis by magnetic sorting
,”
Anal. Chem.
83
,
8050
8056
(
2011
).
39.
P. S.
Williams
,
L. R.
Moore
,
P.
Joshi
,
M.
Goodin
,
M.
Zborowski
, and
A.
Fleischman
, “
Microfluidic chip for graduated magnetic separation of circulating tumor cells by their epithelial cell adhesion molecule expression and magnetic nanoparticle binding
,”
J. Chromatogr. A
1637
,
461823
(
2021
).
40.
H.
Pei
,
L.
Li
,
Z.
Han
,
Y.
Wang
, and
B.
Tang
, “
Recent advances in microfluidic technologies for circulating tumor cells: Enrichment, single-cell analysis, and liquid biopsy for clinical applications
,”
Lab Chip
20
,
3854
3875
(
2020
).
41.
F. S.
Iliescu
,
D. P.
Poenar
,
F.
Yu
,
M.
Ni
,
K. H.
Chan
,
I.
Cima
,
H. K.
Taylor
,
I.
Cima
, and
C.
Iliescu
, “
Recent advances in microfluidic methods in cancer liquid biopsy
,”
Biomicrofluidics
13
,
041503
(
2019
).
42.
X.
Li
,
Y.
Li
,
W.
Shao
,
Z.
Li
,
R.
Zhao
, and
Z.
Ye
, “
Strategies for enrichment of circulating tumor cells
,”
Transl. Cancer Res.
9
,
2012
2025
(
2020
).
43.
V.
Akpe
,
T. H.
Kim
,
C. L.
Brown
, and
I. E.
Cock
, “
Circulating tumour cells: A broad perspective
,”
J. R. Soc., Interface
17
,
20200065
(
2020
).
44.
P.
Bankó
,
S. Y.
Lee
,
V.
Nagygyörgy
,
M.
Zrínyi
,
C. H.
Chae
,
D. H.
Cho
, and
A.
Telekes
, “
Technologies for circulating tumor cell separation from whole blood
,”
J. Hematol. Oncol.
12
,
48
(
2019
).
45.
A.
Xiang
,
M.
Xue
,
F.
Ren
,
L.
Wang
,
Z.
Ye
,
D.
Li
,
Q.
Ji
,
G.
Ji
, and
Z.
Lu
, “
High-throughput and continuous flow isolation of rare circulating tumor cells and clusters in gastric cancer from human whole blood samples using electromagnetic vibration-based filtration
,”
Oncol. Rep.
43
,
1975
1985
(
2020
).
46.
M.
Vacante
,
R.
Ciuni
,
F.
Basile
, and
A.
Biondi
, “
The liquid biopsy in the management of colorectal cancer: An overview
,”
Biomedicines
8
,
308
(
2020
).
47.
C. R. C.
Tan
,
L.
Zhou
, and
W. S.
El-Deiry
, “
Circulating tumor cells versus circulating tumor DNA in colorectal cancer: Pros and cons
,”
Curr. Colorectal Cancer Rep.
12
,
151
161
(
2016
).
48.
K. C.
Andree
,
G.
van Dalum
, and
L. W. M. M.
Terstappen
, “
Challenges in circulating tumor cell detection by the CellSearch system
,”
Mol. Oncol.
10
,
395
407
(
2016
).
49.
Z.
Habli
,
W.
AlChamaa
,
R.
Saab
,
H.
Kadara
, and
M. L.
Khraiche
, “
Circulating tumor cell detection technologies and clinical utility: Challenges and opportunities
,”
Cancers
12
,
1930
(
2020
).
50.
J.
Kraan
,
M. H.
Strijbos
,
A. M.
Sieuwerts
,
J. A.
Foekens
,
M. A.
den Bakker
,
C.
Verhoef
,
S.
Sleijfer
, and
J. W.
Gratama
, “
A new approach for rapid and reliable enumeration of circulating endothelial cells in patients
,”
J. Thromb. Haemostasis
10
,
931
939
(
2012
).
51.
W. J.
Allard
,
J.
Matera
,
M. C.
Miller
,
M.
Repollet
,
M. C.
Connelly
,
C.
Rao
,
A. G. J.
Tibbe
,
J. W.
Uhr
, and
L. W. M. M.
Terstappen
, “
Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases
,”
Clin. Cancer Res.
10
,
6897
6904
(
2004
).
52.
N.
Eliaz
,
O.
Levi
,
D.
Svetlizky
, and
I.
Benhar
, “
A high-throughput semi-automated magnetic isolation and concentration system
,” US provisional patent application 63/170,451 (
3 April 2021
).
53.
H.
Birkhofer
,
J.
Jänsch
, and
H.
Kloberdanz
, “
An extensive and detailed view of the application of design methods and methodology in industry
,” in
Proceedings of the International Conference on Engineering Design (ICED05)
(
The Design Society
,
Melbourne, Australia
,
2005
), pp.
276
277
.
54.
P.
Monk
,
Finite Element Methods for Maxwell’s Equations
(
Oxford University Press
,
UK
,
2003
).
55.
D.
Svetlizky
, “
Bio-ferrography: Mechanical properties of isolated cancerous cells by atomic force microscope and design of a multichannel ferrograph for isolation of cancerous cells from whole blood
,” M.Sc. thesis,
Tel Aviv University
,
Israel
,
2017
.
56.
O.
Levi
, “
Diagnosis of colorectal cancer by bio-ferrography
,” Ph.D. dissertation (
Tel Aviv University
,
Tel Aviv, Israel
2015
).
57.
P.
Nath
,
J.
Strelnik
,
A.
Vasanji
,
L. R.
Moore
,
P. S.
Williams
,
M.
Zborowski
,
S.
Roy
, and
A. J.
Fleischman
, “
Development of multistage magnetic deposition microscopy
,”
Anal. Chem.
81
,
43
49
(
2009
).
58.
J.
Sun
,
L.
Moore
,
W.
Xue
,
J.
Kim
,
M.
Zborowski
, and
J. J.
Chalmers
, “
Correlation of simulation/finite element analysis to the separation of intrinsically magnetic spores and red blood cells using a microfluidic magnetic deposition system
,”
Biotechnol. Bioeng.
115
,
1288
1300
(
2018
).

Supplementary Material

You do not currently have access to this content.