Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump–probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump–probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates. The conventional definition of the TPD (i.e., the depth at which temperature drops to 1/e value of the maximum surface temperature) does not truly represent the upper limit of how far beneath the surface SSTR can probe. For estimating the uncertainty of SSTR measurements of a buried substrate a priori, sensitivity calculations provide the best means. Thus, detailed sensitivity calculations are provided to guide future measurements. Due to the steady-state nature of SSTR, it can measure the thermal conductivity of buried substrates that are traditionally challenging by transient pump–probe techniques, exemplified by measuring three control samples. We also discuss the required criteria for SSTR to isolate the thermal properties of a buried film. Our study establishes SSTR as a suitable technique for thermal characterizations of sub-surface buried substrates in typical device geometries.

1.
J.-S.
Park
,
Y.-G.
Mo
,
J.-K.
Jeong
,
J.-H.
Jeong
,
H.-S.
Shin
, and
H.-J.
Lee
, “
Thin film transistor and organic light-emitting display device having the thin film transistor
,” U.S. patent application 12/076, 216 (September 18,
2008
).
2.
K.
Tokunaga
, “
Thin film transistor and method of manufacturing thin film transistor
,” U.S. patent application 12/557, 212 (March 18, 2010).
3.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O’Quinn
, “
Thin-film thermoelectric devices with high room-temperature figures of merit
,”
Nature
413
,
597
602
(
2001
).
4.
J.-Q.
Xi
,
M. F.
Schubert
,
J. K.
Kim
,
E. F.
Schubert
,
M.
Chen
,
S.-Y.
Lin
,
W.
Liu
, and
J. A.
Smart
, “
Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection
,”
Nat. Photonics
1
,
176
179
(
2007
).
5.
P.
Peumans
,
A.
Yakimov
, and
S. R.
Forrest
, “
Small molecular weight organic thin-film photodetectors and solar cells
,”
J. Appl. Phys.
93
,
3693
3723
(
2003
).
6.
Y.
Yang
,
L.
Ma
, and
J.
Wu
, “
Organic thin-film memory
,”
MRS Bull.
29
,
833
837
(
2004
).
7.
S. H.
Sung
and
B. W.
Boudouris
, “
Systematic control of the nanostructure of semiconducting-ferroelectric polymer composites in thin film memory devices
,”
ACS Macro Lett.
4
,
293
297
(
2015
).
8.
K.
Aryana
,
J. T.
Gaskins
,
J.
Nag
,
D. A.
Stewart
,
Z.
Bai
,
S.
Mukhopadhyay
,
J. C.
Read
,
D. H.
Olson
,
E. R.
Hoglund
,
J. M.
Howe
 et al., “
Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices
,”
Nat. Commun.
12
,
774
(
2021
).
9.
C.
Dames
, “
Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods
,”
Annu. Rev. Heat Transfer
16
,
7
(
2013
).
10.
D. G.
Cahill
, “
Analysis of heat flow in layered structures for time-domain thermoreflectance
,”
Rev. Sci. Instrum.
75
,
5119
5122
(
2004
).
11.
A. J.
Schmidt
,
X.
Chen
, and
G.
Chen
, “
Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance
,”
Rev. Sci. Instrum.
79
,
114902
(
2008
).
12.
J. P.
Feser
,
J.
Liu
, and
D. G.
Cahill
, “
Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry
,”
Rev. Sci. Instrum.
85
,
104903
(
2014
).
13.
P.
Jiang
,
X.
Qian
, and
R.
Yang
, “
Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials
,”
J. Appl. Phys.
124
,
161103
(
2018
).
14.
A. J.
Schmidt
,
R.
Cheaito
, and
M.
Chiesa
, “
A frequency-domain thermoreflectance method for the characterization of thermal properties
,”
Rev. Sci. Instrum.
80
,
094901
(
2009
).
15.
T.
Borca-Tasciuc
,
A. R.
Kumar
, and
G.
Chen
, “
Data reduction in 3ω method for thin-film thermal conductivity determination
,”
Rev. Sci. Instrum.
72
,
2139
2147
(
2001
).
16.
T.
Tong
and
A.
Majumdar
, “
Reexamining the 3-omega technique for thin film thermal characterization
,”
Rev. Sci. Instrum.
77
,
104902
(
2006
).
17.
D.
Zhao
,
X.
Qian
,
X.
Gu
,
S. A.
Jajja
, and
R.
Yang
, “
Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials
,”
J. Electron. Packag.
138
,
040802
(
2016
).
18.
J.
Zhu
,
D.
Tang
,
W.
Wang
,
J.
Liu
,
K. W.
Holub
, and
R.
Yang
, “
Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films
,”
J. Appl. Phys.
108
,
094315
(
2010
).
19.
J. L.
Braun
,
D. H.
Olson
,
J. T.
Gaskins
, and
P. E.
Hopkins
, “
A steady-state thermoreflectance method to measure thermal conductivity
,”
Rev. Sci. Instrum.
90
,
024905
(
2019
).
20.
P.
Jiang
,
X.
Qian
, and
R.
Yang
, “
Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach
,”
Rev. Sci. Instrum.
88
,
074901
(
2017
).
21.
L.
Tang
and
C.
Dames
, “
Anisotropic thermal conductivity tensor measurements using beam-offset frequency domain thermoreflectance (BO-FDTR) for materials lacking in-plane symmetry
,”
Int. J. Heat Mass Transfer
164
,
120600
(
2021
).
22.
Y. R.
Koh
,
Z.
Cheng
,
A.
Mamun
,
M. S. B.
Hoque
,
Z.
Liu
,
T.
Bai
,
K.
Hussain
,
M. E.
Liao
,
R.
Li
,
J. T.
Gaskins
 et al., “
Bulk-like intrinsic phonon thermal conductivity of micrometer thick aln films
,”
ACS Appl. Mater. Interfaces
12
,
29443
29450
(
2020
).
23.
B.
Chatterjee
,
D.
Shoemaker
,
Y.
Song
,
T.
Shi
,
H.-L.
Huang
,
D.
Keum
,
A.
Krishnan
,
B. M.
Foley
,
I.
Jovanovic
,
J.
Hwang
 et al., “
Cumulative impacts of proton irradiation on the self-heating of AlGaN/GaN HEMTs
,”
ACS Appl. Electron. Mater.
2
,
980
991
(
2020
).
24.
R.
Rosei
and
D. W.
Lynch
, “
Thermomodulation spectra of Al, Au, and Cu
,”
Phys. Rev. B
5
,
3883
(
1972
).
25.
Y. K.
Koh
and
D. G.
Cahill
, “
Frequency dependence of the thermal conductivity of semiconductor alloys
,”
Phys. Rev. B
76
,
075207
(
2007
).
26.
J. L.
Braun
and
P. E.
Hopkins
, “
Upper limit to the thermal penetration depth during modulated heating of multilayer thin films with pulsed and continuous wave lasers: A numerical study
,”
J. Appl. Phys.
121
,
175107
(
2017
).
27.
J. L.
Braun
,
C. J.
Szwejkowski
,
A.
Giri
, and
P. E.
Hopkins
, “
On the steady-state temperature rise during laser heating of multilayer thin films in optical pump–probe techniques
,”
J. Heat Transfer
140
,
052801
(
2018
).
28.
D. H.
Olson
,
J. L.
Braun
, and
P. E.
Hopkins
, “
Spatially resolved thermoreflectance techniques for thermal conductivity measurements from the nanoscale to the mesoscale
,”
J. Appl. Phys.
126
,
150901
(
2019
).
29.
R. B.
Wilson
,
B. A.
Apgar
,
L. W.
Martin
, and
D. G.
Cahill
, “
Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties
,”
Opt. Express
20
,
28829
28838
(
2012
).
30.
Y.
Wang
,
J. Y.
Park
,
Y. K.
Koh
, and
D. G.
Cahill
, “
Thermoreflectance of metal transducers for time-domain thermoreflectance
,”
J. Appl. Phys.
108
,
043507
(
2010
).
31.
C. M.
Rost
,
J.
Braun
,
K.
Ferri
,
L.
Backman
,
A.
Giri
,
E. J.
Opila
,
J.-P.
Maria
, and
P. E.
Hopkins
, “
Hafnium nitride films for thermoreflectance transducers at high temperatures: Potential based on heating from laser absorption
,”
Appl. Phys. Lett.
111
,
151902
(
2017
).
32.
L.
Wang
,
R.
Cheaito
,
J. L.
Braun
,
A.
Giri
, and
P. E.
Hopkins
, “
Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer
,”
Rev. Sci. Instrum.
87
,
094902
(
2016
).
33.
E. L.
Radue
,
J. A.
Tomko
,
A.
Giri
,
J. L.
Braun
,
X.
Zhou
,
O. V.
Prezhdo
,
E. L.
Runnerstrom
,
J.-P.
Maria
, and
P. E.
Hopkins
, “
Hot electron thermoreflectance coefficient of gold during electron–phonon nonequilibrium
,”
ACS Photonics
5
,
4880
4887
(
2018
).
34.
M.
Qin
,
J.
Gild
,
C.
Hu
,
H.
Wang
,
M. S. B.
Hoque
,
J. L.
Braun
,
T. J.
Harrington
,
P. E.
Hopkins
,
K. S.
Vecchio
, and
J.
Luo
, “
Dual-phase high-entropy ultrahigh temperature ceramics
,”
J. Eur. Ceram. Soc.
40
,
5037
5050
(
2020
).
35.
E.
Jang
,
P.
Banerjee
,
J.
Huang
,
R.
Holley
,
J. T.
Gaskins
,
M. S. B.
Hoque
,
P. E.
Hopkins
 et al., “
Thermoelectric performance enhancement of naturally occurring Bi and chitosan composite films using energy efficient method
,”
Electronics
9
,
532
(
2020
).
36.
M. S. B.
Hoque
,
Y. R.
Koh
,
J. L.
Braun
,
A.
Mamun
,
Z.
Liu
,
K.
Huynh
,
M. E.
Liao
,
K.
Hussain
,
Z.
Cheng
,
E. R.
Hoglund
 et al., “
High in-plane thermal conductivity of aluminum nitride thin films
,”
ACS Nano
15
,
9588
9599
(
2021
).
37.
K.
Ye
,
S. C.
Siah
,
P. T.
Erslev
,
A.
Akey
,
C.
Settens
,
M. S. B.
Hoque
,
J.
Braun
,
P.
Hopkins
,
G.
Teeter
,
T.
Buonassisi
 et al., “
Tuning electrical, optical, and thermal properties through cation disorder in Cu2ZnSnS4
,”
Chem. Mater.
31
,
8402
8412
(
2019
).
38.
A.
Giri
,
A. Z.
Chen
,
A.
Mattoni
,
K.
Aryana
,
D.
Zhang
,
X.
Hu
,
S.-H.
Lee
,
J. J.
Choi
, and
P. E.
Hopkins
, “
Ultralow thermal conductivity of two-dimensional metal halide perovskites
,”
Nano Lett.
20
,
3331
3337
(
2020
).
39.
E.
Ziade
,
J.
Yang
,
G.
Brummer
,
D.
Nothern
,
T.
Moustakas
, and
A. J.
Schmidt
, “
Thermal transport through GaN–SiC interfaces from 300 to 600 K
,”
Appl. Phys. Lett.
107
,
091605
(
2015
).
40.
J. L.
Braun
,
C. H.
Baker
,
A.
Giri
,
M.
Elahi
,
K.
Artyushkova
,
T. E.
Beechem
,
P. M.
Norris
,
Z. C.
Leseman
,
J. T.
Gaskins
, and
P. E.
Hopkins
, “
Size effects on the thermal conductivity of amorphous silicon thin films
,”
Phys. Rev. B
93
,
140201
(
2016
).
41.
M. S.
Tareq
,
S.
Zainuddin
,
E.
Woodside
, and
F.
Syed
, “
Investigation of the flexural and thermomechanical properties of nanoclay/graphene reinforced carbon fiber epoxy composites
,”
J. Mater. Res.
34
,
3678
3687
(
2019
).
42.
Z.
Cheng
,
F.
Mu
,
L.
Yates
,
T.
Suga
, and
S.
Graham
, “
Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices
,”
ACS Appl. Mater. Interfaces
12
,
8376
8384
(
2020
).
43.
A.
Giri
and
P. E.
Hopkins
, “
A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces
,”
Adv. Funct. Mater.
30
,
1903857
(
2020
).
44.
W.
Fulkerson
,
J. P.
Moore
,
R. K.
Williams
,
R. S.
Graves
, and
D. L.
McElroy
, “
Thermal conductivity, electrical resistivity, and Seebeck coefficient of silicon from 100 to 1300 K
,”
Phys. Rev.
167
,
765
(
1968
).
45.
R. K.
Kremer
,
K.
Graf
,
M.
Cardona
,
G. G.
Devyatykh
,
A. V.
Gusev
,
A. M.
Gibin
,
A. V.
Inyushkin
,
A. N.
Taldenkov
, and
H.-J.
Pohl
, “
Thermal conductivity of isotopically enriched 28Si: Revisited
,”
Solid State Commun.
131
,
499
503
(
2004
).
46.
R. B.
Wilson
and
D. G.
Cahill
, “
Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments
,”
Nat. Commun.
5
,
5075
(
2014
).
47.
T. E.
Beechem
,
A. E.
McDonald
,
E. J.
Fuller
,
A. A.
Talin
,
C. M.
Rost
,
J.-P.
Maria
,
J. T.
Gaskins
,
P. E.
Hopkins
, and
A. A.
Allerman
, “
Size dictated thermal conductivity of GaN
,”
J. Appl. Phys.
120
,
095104
(
2016
).
48.
E.
Ziade
,
J.
Yang
,
G.
Brummer
,
D.
Nothern
,
T.
Moustakas
, and
A. J.
Schmidt
, “
Thickness dependent thermal conductivity of gallium nitride
,”
Appl. Phys. Lett.
110
,
031903
(
2017
).
49.
F.
Mu
,
Z.
Cheng
,
J.
Shi
,
S.
Shin
,
B.
Xu
,
J.
Shiomi
,
S.
Graham
, and
T.
Suga
, “
High thermal boundary conductance across bonded heterogeneous GaN–SiC interfaces
,”
ACS Appl. Mater. Interfaces
11
,
33428
33434
(
2019
).
50.
Q.
Zheng
,
C.
Li
,
A.
Rai
,
J. H.
Leach
,
D. A.
Broido
, and
D. G.
Cahill
, “
Thermal conductivity of GaN, 71GaN, and SiC from 150 K to 850 K
,”
Phys. Rev. Mater.
3
,
014601
(
2019
).
51.
H.
Li
,
R.
Hanus
,
C. A.
Polanco
,
A.
Zeidler
,
G.
Koblmüller
,
Y. K.
Koh
, and
L.
Lindsay
, “
GaN thermal transport limited by the interplay of dislocations and size effects
,”
Phys. Rev. B
102
,
014313
(
2020
).
52.
L.
Lindsay
,
D. A.
Broido
, and
T. L.
Reinecke
, “
Thermal conductivity and large isotope effect in GaN from first principles
,”
Phys. Rev. Lett.
109
,
095901
(
2012
).
53.
D. I.
Florescu
,
V. M.
Asnin
,
F. H.
Pollak
,
R. J.
Molnar
, and
C. E. C.
Wood
, “
High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapor phase epitaxy grown n-GaN/sapphire (0001): Doping dependence
,”
J. Appl. Phys.
88
,
3295
3300
(
2000
).
54.
D. G.
Cahill
,
S.-M.
Lee
, and
T. I.
Selinder
, “
Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings
,”
J. Appl. Phys.
83
,
5783
5786
(
1998
).
55.
L.
Lindsay
,
D. A.
Broido
, and
T. L.
Reinecke
, “
Ab initio thermal transport in compound semiconductors
,”
Phys. Rev. B
87
,
165201
(
2013
).
56.
R. B.
Wilson
and
D. G.
Cahill
, “
Limits to Fourier theory in high thermal conductivity single crystals
,”
Appl. Phys. Lett.
107
,
203112
(
2015
).
57.
W.
Zheng
,
B.
Huang
, and
Y. K.
Koh
, “
Ultralow thermal conductivity and thermal diffusivity of graphene/metal heterostructures through scarcity of low-energy modes in graphene
,”
ACS Appl. Mater. Interfaces
12
,
9572
9579
(
2020
).
58.
Y. R.
Koh
,
J.
Shi
,
B.
Wang
,
R.
Hu
,
H.
Ahmad
,
S.
Kerdsongpanya
,
E.
Milosevic
,
W. A.
Doolittle
,
D.
Gall
,
Z.
Tian
 et al., “
Thermal boundary conductance across epitaxial metal/sapphire interfaces
,”
Phys. Rev. B
102
,
205304
(
2020
).
59.
D. H.
Olson
,
J. T.
Gaskins
,
J. A.
Tomko
,
E. J.
Opila
,
R. A.
Golden
,
G. J. K.
Harrington
,
A. L.
Chamberlain
, and
P. E.
Hopkins
, “
Local thermal conductivity measurements to determine the fraction of α-cristobalite in thermally grown oxides for aerospace applications
,”
Scr. Mater.
177
,
214
217
(
2020
).
60.
Y.
Dong
,
B.-Y.
Cao
, and
Z.-Y.
Guo
, “
Ballistic–diffusive phonon transport and size induced anisotropy of thermal conductivity of silicon nanofilms
,”
Physica E
66
,
1
6
(
2015
).
61.
D. G.
Cahill
, “
Thermal conductivity measurement from 30 to 750 K: The 3ω method
,”
Rev. Sci. Instrum.
61
,
802
808
(
1990
).
You do not currently have access to this content.