Time-Correlated Single-Photon Counting (TCSPC) is an excellent technique used in a great variety of scientific experiments to acquire exceptionally fast and faint light signals. Above all, in Fluorescence Lifetime Imaging (FLIM), it is widely recognized as the gold standard to record sub-nanosecond transient phenomena with picosecond precision. Unfortunately, TCSPC has an intrinsic limitation: to avoid the so-called pile-up distortion, the experiments have been historically carried out, limiting the acquisition rate below 5% of the excitation frequency. In 2017, we demonstrated that such a limitation can be overcome if the detector dead time is exactly matched with the excitation period, thus paving the way to unprecedented speedup of FLIM measurements. In this paper, we present the first single-channel system that implements the novel proposed methodology to be used in modern TCSPC experimental setups. To achieve this goal, we designed a compact detection head, including a custom single-photon avalanche diode externally driven by a fully integrated Active Quenching Circuit (AQC), featuring a finely tunable dead time and a short reset time. The output timing signal is extracted by using a picosecond precision Pick-Up Circuit (PUC) and fed to a newly developed timing module consisting of a mixed-architecture Fast Time to Amplitude Converter (F-TAC) followed by high-performance Analog-to-Digital Converters (ADCs). Data are transmitted in real-time to a Personal Computer (PC) at USB 3.0 rate for specific and custom elaboration. Preliminary experimental results show that the new TCSPC system is suitable for implementing the proposed technique, achieving, indeed, high timing precision along with a count rate as high as 40 Mcps.

1.
K.
Suhling
,
L. M.
Hirvonen
,
J. A.
Levitt
,
P.-H.
Chung
,
C.
Tregidgo
,
A.
Le Marois
,
D. A.
Rusakov
,
K.
Zheng
,
S.
Ameer-Beg
,
S.
Poland
 et al,
Med. Photonics
27
,
3
(
2015
).
2.
R.
Datta
,
T. M.
Heaster
,
J. T.
Sharick
,
A. A.
Gillette
, and
M. C.
Skala
,
Int. Soc. Opt. Photonics
25
,
071203
(
2020
).
3.
E.
Gratton
,
S.
Breusegem
,
J. D.
Sutin
,
Q.
Ruan
, and
N. P.
Barry
,
J. Biomed. Opt.
8
,
381
(
2003
).
4.
W.
Becker
,
Advanced Time-Correlated Single Photon Counting Techniques
(
Springer
,
2005
).
5.
C.
Veerappan
,
J.
Richardson
,
R.
Walker
,
D.-U.
Li
,
M. W.
Fishburn
,
Y.
Maruyama
,
D.
Stoppa
,
F.
Borghetti
,
M.
Gersbach
,
R. K.
Henderson
 et al, in
2011 IEEE International Solid-State Circuits Conference
(
IEEE
,
2011
), p.
312
.
6.
F.
Villa
,
R.
Lussana
,
D.
Bronzi
,
S.
Tisa
,
A.
Tosi
,
F.
Zappa
,
A.
Dalla Mora
,
D.
Contini
,
D.
Durini
,
S.
Weyers
, and
W.
Brockherde
,
IEEE J. Sel. Top. Quantum Electron.
20
,
364
(
2014
).
7.
L.
Parmesan
,
N.
Dutton
,
N. J.
Calder
,
N.
Krstajic
,
A. J.
Holmes
,
L. A.
Grant
, and
R. K.
Henderson
, in
International Image Sensor Workshop, Vaals, Netherlands, Memory
(
IISS
,
2015
), Vol. 900, p.
M5
.
8.
T.
Al Abbas
,
N. A. W.
Dutton
,
O.
Almer
,
N.
Finlayson
,
F. M. D.
Rocca
, and
R. K.
Henderson
,
IEEE Sens. J.
18
,
3163
(
2018
).
9.
R. K.
Henderson
,
N.
Johnston
,
H.
Chen
,
D. D.-U.
Li
,
G.
Hungerford
,
R.
Hirsch
,
D.
McLoskey
,
P.
Yip
, and
D. J.
Birch
, in
ESSCIRC 2018-IEEE 44th European Solid State Circuits Conference (ESSCIRC)
(
IEEE
,
2018
), p.
54
.
10.
A.
Cominelli
,
G.
Acconcia
,
P.
Peronio
,
M.
Ghioni
, and
I.
Rech
,
Rev. Sci. Instrum.
88
,
123701
(
2017
).
11.
P.
Peronio
,
G.
Acconcia
,
I.
Rech
, and
M.
Ghioni
,
Rev. Sci. Instrum.
86
,
113101
(
2015
).
12.
G.
Acconcia
,
A.
Cominelli
,
M.
Ghioni
, and
I.
Rech
,
Opt. Express
26
,
15398
15410
(
2018
).
13.
M.
Ghioni
,
A.
Gulinatti
,
I.
Rech
,
F.
Zappa
, and
S.
Cova
,
IEEE J. Sel. Top. Quantum Electron.
13
,
852
862
(
2007
).
14.
P.
Peronio
,
I.
Labanca
,
M.
Ghioni
, and
I.
Rech
,
Rev. Sci. Instrum.
88
,
116102
(
2017
).
15.
M.
Crotti
,
I.
Rech
, and
M.
Ghioni
,
IEEE J. Solid-State Circuits
47
,
699
(
2011
).
16.
S.
Antonioli
,
L.
Miari
,
A.
Cuccato
,
M.
Crotti
,
I.
Rech
, and
M.
Ghioni
,
Rev. Sci. Instrum.
84
,
064705
(
2013
).
17.
I.
De Lotto
and
G. E.
Paglia
,
IEEE Trans. Instrum. Meas.
IM-35
(
2
),
170
(
1986
).
18.
D.
Resnati
,
I.
Rech
, and
A.
Geraci
,
Rev. Sci. Instrum.
79
,
064706
(
2008
).
19.
H.
Kaeslin
,
Top-Down Digital VLSI Design
(
Morgan Kaufmann
,
2014
).
20.
Xilinx, 7 Series FPGAs SelectIO Resources, UG471,
2011
.
You do not currently have access to this content.