The sensitivity of an infrared imaging video bolometer (IRVB) was improved for the measurement of relatively low energy plasma radiation from the viewpoint of the metal foil absorber material. The photon energy of the radiation was considered up to 1 keV for the divertor plasma measurement. The thickness of the foil absorber was evaluated not only for conventional heavy elements, e.g., platinum, but also for light elements by the relation between the photon energy and attenuation length and by mechanical strength. A heat-transfer calculation using ANSYS suggested that light elements with practical foil thickness provide a higher temperature rise of the foil absorber compared with heavier elements with practical foil thickness. The maximum of the temperature rise was evaluated using He–Ne laser irradiation onto absorber samples. The material dependence of the temperature rise has a similar tendency between calculations and experiments. Experimentally, the sensitivity of the IRVB improved from 280 to 110 µW/cm2 using titanium with 1 µm thickness compared with conventional platinum with 2.5 µm thickness. Consequently, the signal-to-noise ratio of the IRVB could be improved from 2.8 to 9.1.

1.
N.
Asakura
,
K.
Hoshino
,
H.
Utoh
,
Y.
Someya
,
S.
Suzuki
,
C.
Bachmann
,
H.
Reimerdes
,
R.
Wenninger
,
H.
Kudo
,
S.
Tokunaga
 et al,
Fusion Eng. Des.
136
,
1214
(
2018
).
2.
M.
Sakamoto
,
K.
Oki
,
Y.
Nakashima
,
Y.
Akabane
,
Y.
Nagatsuka
,
M.
Yoshikawa
,
R.
Nohara
,
K.
Hosoi
,
H.
Takeda
,
K.
Ichimura
 et al,
Trans. Fusion Sci. Technol.
63
,
188
(
2013
).
3.
Y.
Nakashima
,
K.
Ichimura
,
M. S.
Islam
,
M.
Sakamoto
,
N.
Ezumi
,
M.
Hirata
,
M.
Ichimura
,
R.
Ikezoe
,
T.
Imai
,
T.
Kariya
 et al,
Nucl. Fusion
57
,
116033
(
2017
).
4.
K. F.
Mast
,
J. C.
Vallet
,
C.
Andelfinger
,
P.
Betzler
,
H.
Kraus
, and
G.
Schramm
,
Rev. Sci. Instrum.
62
,
744
(
1991
).
5.
B. J.
Peterson
,
Rev. Sci. Instrum.
71
,
3696
(
2000
).
6.
B. J.
Peterson
,
H.
Parchamy
,
N.
Ashikawa
,
H.
Kawashima
,
S.
Konoshima
,
A. Y.
Kostryukov
,
I. V.
Miroshnikov
,
D. C.
Seo
, and
T.
Omori
,
Rev. Sci. Instrum.
79
,
10E301
(
2008
).
7.
K.
Mukai
,
S.
Masuzaki
,
B. J.
Peterson
,
T.
Akiyama
,
M.
Kobayashi
,
C.
Suzuki
,
H.
Tanaka
,
S. N.
Pandya
,
R.
Sano
,
G.
Motojima
 et al,
Nucl. Fusion
55
,
083016
(
2017
).
8.
K.
Mukai
,
B. J.
Peterson
,
S.
Takayama
, and
R.
Sano
,
Rev. Sci. Instrum.
87
,
11E124
(
2016
).
9.
K.
Mukai
,
R.
Abe
,
B. J.
Peterson
, and
S.
Takayama
,
Rev. Sci. Instrum.
89
,
10E114
(
2018
).
10.
R.
Sano
,
B. J.
Peterson
,
E. A.
Drapiko
,
Y.
Watanabe
,
Y.
Yamauchi
, and
T.
Hino
,
Plasma Fusion Res.
6
,
2406076
(
2011
).
11.
K.
Mukai
,
T.
Nishitani
,
K.
Ogawa
, and
B. J.
Peterson
,
IEEE Trans. Plasma Sci.
47
(
1
),
18
(
2019
).
12.
S. N.
Pandya
,
B. J.
Peterson
,
K.
Mukai
,
R.
Sano
,
A.
Enokuchi
, and
N.
Takeyama
,
Rev. Sci. Instrum.
85
,
073107
(
2014
).
13.
B. J.
Peterson
,
S.
Konoshima
,
A. Y.
Kostryukov
,
D. C.
Seo
,
Y.
Liu
,
I. V.
Miroshnikov
,
N.
Ashikawa
,
H.
Parchamy
,
H.
Kawashima
,
N.
Iwama
 et al,
Plasma Fusion Res.
2
,
S1018
(
2007
).
14.
K.
Mukai
,
B. J.
Peterson
,
S. N.
Pandya
,
R.
Sano
, and
M.
Itomi
,
Plasma Fusion Res.
9
,
3402037
(
2014
).
15.
The Center for X-Ray Optics, Lawrence Berkeley National Laboratory
, X-Ray Attenuation Length, http://henke.lbl.gov/optical_constants/atten2.html.
16.
S. N.
Pandya
,
B. J.
Peterson
,
R.
Sano
,
K.
Mukai
,
E. A.
Drapiko
,
A. G.
Alekseyev
,
T.
Akiyama
,
M.
Itomi
, and
T.
Watanabe
,
Rev. Sci. Instrum.
85
,
054902
(
2014
).
You do not currently have access to this content.