Remote control of the diagnostic systems is the basic requirement for the high performance plasma operation in a fusion device. This work presents the development of the remote control system for the multichannel Doppler backward scattering (DBS) reflectometers. It includes a remote controlled quasi-optical system and a remote intermediate frequency (IF) amplifier gain control system. The quasi-optical system contains a rotational polarizer, its polarization angle is tunable through a remote controlled motor, and it could combine the microwave beams with a wide frequency range into one focused beam. The remote IF gain control system utilizes the digital microcontroller (MCU) technique to regulate the signal amplitude for each signal channel. The gain parameters of amplifiers are adjustable, and the feedback of working status in the IF system will be sent to MCU in real time for safe operation. The gain parameters could be controlled either by the Ethernet remote way or directly through the local control interface on the system. Preliminary experimental results show the effectiveness of the remote controlled multichannel DBS system.

1.
X. L.
Zou
 et al., in
26th EPS Conference on Controlled Fusion and Plasma Physics, Maastricht, 14–18 June 1999
(
ECA
,
1999
), Vol. 23J, pp.
1041
1044
, http://crpppc42.epfl.ch/Maas/web/pdf/p3022.pdf.
2.
M.
Hirsch
 et al.,
Plasma Phys. Controlled Fusion
43
,
1641
(
2001
).
3.
G. D.
Conway
 et al.,
Plasma Phys. Controlled Fusion
46
,
951
(
2004
).
4.
J. C.
Hillesheim
 et al.,
Rev. Sci. Instrum.
80
,
083507
(
2009
).
5.
T.
Happel
 et al.,
Rev. Sci. Instrum.
80
,
073502
(
2009
).
6.
T.
Tokuzawa
 et al.,
Rev. Sci. Instrum.
83
,
10E322
(
2012
).
7.
C.
Zhou
 et al.,
Rev. Sci. Instrum.
84
,
103511
(
2013
).
8.
K. D.
Lee
 et al.,
Rev. Sci. Instrum.
85
,
11D858
(
2014
).
9.
W. W.
Xiao
 et al.,
Plasma Sci. Technol.
10
,
403
(
2008
).
10.
W. L.
Zhong
 et al.,
Nucl. Fusion
55
,
113005
(
2015
).
11.
Z. B.
Shi
 et al.,
Rev. Sci. Instrum.
87
,
113501
(
2016
).
12.
Z. B.
Shi
 et al.,
Rev. Sci. Instrum.
89
,
10H104
(
2018
).
13.
Z. B.
Shi
 et al.,
Plasma Sci. Technol.
20
,
094007
(
2018
).
14.
P.
Hennequin
 et al.,
Rev. Sci. Instrum.
75
,
3881
(
2004
).
15.
L.
Cupido
 et al.,
Rev. Sci. Instrum.
75
,
3865
(
2004
).
16.
F.
Clairet
 et al.,
Rev. Sci. Instrum.
88
,
113506
(
2017
).
17.
W. A.
Peebles
 et al.,
Rev. Sci. Instrum.
81
,
10D902
(
2010
).
18.
N. A.
Crocker
 et al.,
Plasma Phys. Controlled Fusion
53
,
105001
(
2011
).
19.
T.
Tokuzawa
 et al., in
14th International Reflectometry Workshop, Lausanne, 22–24 May 2019
(
SPC
,
2019
), p.
O.203
, https://www.aug.ipp.mpg.de/IRW/IRW14/papers/203-IRW14-Tokuzawa-paper.pdf.
20.
J. Q.
Hu
 et al.,
Rev. Sci. Instrum.
88
,
073504
(
2017
).
21.
M. Y.
Wang
 et al.,
Rev. Sci. Instrum.
89
,
093501
(
2018
).
22.
J. C.
Hillesheim
 et al.,
Nucl. Fusion
55
,
073024
(
2015
).
23.
Z. B.
Shi
 et al., in
14th Intlernational Reflectometry Workshop, Lausanne, 22–24 May 2019
(
SPC
,
2019
), p.
O.204
, https://www.aug.ipp.mpg.de/IRW/IRW14/papers/204-IRW14-Shi-paper.pdf.
24.
G. D.
Conway
 et al.,
Plasma Phys. Controlled Fusion
47
,
1165
(
2005
).
25.
M.
Jiang
 et al.,
Nucl. Fusion
59
,
046003
(
2019
).
26.
Y.
Xu
 et al.,
Phys. Rev. Lett.
97
,
165003
(
2006
).
27.
P.
Tamain
 et al.,
Plasma Phys. Controlled Fusion
52
,
075017
(
2010
).
28.
K. J.
Zhao
 et al.,
Nucl. Fusion
55
,
073022
(
2015
).
29.
G. D.
Conway
 et al.,
Plasma Phys. Controlled Fusion
57
,
014035
(
2015
).
You do not currently have access to this content.