Spectroscopic diagnostics of future fusion reactor plasmas require information on impurity line emissions, especially for relevant high-Z metal elements (e.g., tungsten). These materials will be widely used as plasma facing components for their high heat tolerance and low sputtering yield. Based on an electron beam ion trap, a compact impurity spectra platform is developed to mimic the high-temperature environment of a fusion reactor. The proposed platform can deliver a focused e-beam at energies over 30 keV using a confining magnetic field of ∼1.0 T generated by two superconducting coils (NbTi). Cooled by a closed-loop cryocooler, the coils can avoid the usage of a complicated cryogenic system involving the handling of liquid helium. For spectroscopic studies of highly charged ions, a spherically curved crystal spectrometer is proposed to measure a wavelength range around 2–4 Å covering the typical wavelength range expected to be emitted by metal ions in a fusion plasma. This paper reports the design and development progress of the platform.

1.
Y. A.
Podpaly
 et al.,
Can. J. Phys.
89
,
591
(
2011
).
2.
J.
Clementson
 et al.,
J. Phys. B: At., Mol. Opt. Phys.
43
,
144009
(
2010
).
3.
R. E.
Marrs
and
M. A.
Levine
 et al.,
Phys. Rev. Lett.
60
,
1715
(
1988
).
4.
J. D.
Gillaspy
 et al., “
Overview of the electron beam ion trap program at NIST
,”
Phys. Scr.
1995
,
392
(
1995
).
5.
J. D.
Silver
 et al., “
The Oxford electron-beam ion trap: A device for spectroscopy of highly charged ions
,”
Rev. Sci. Instrum.
65
,
1072
(
1994
).
6.
J. D.
Gillaspy
 et al.,
Phys. Scr., T
71
,
99
(
1997
).
7.
H.
Watanabe
 et al.,
J. Phys. Soc. Jpn.
66
,
3795
(
1997
).
8.
C.
Biedermann
 et al.,
Phys. Scr., T
73
,
360
(
1997
).
9.
K.
Motohashi
 et al.,
Rev. Sci. Instrum.
71
,
890
(
2000
).
10.
R.
Radtke
 et al.,
Phys. Rev. A
64
,
012720
(
2001
).
11.
H.
Watanabe
 et al.,
J. Phys.: Conf. Ser.
2
,
182
(
2004
).
12.
S.
Boehm
 et al.,
J. Phys.: Conf. Ser.
58
,
303
(
2007
).
13.
D.
Osin
 et al.,
Eur. Phys. J.
66
,
286
(
2012
).
14.
V. P.
Ovsyannikov
 et al.,
Rev. Sci. Instrum.
70
,
2646
(
1999
).
15.
N.
Nakamura
 et al.,
Rev. Sci. Instrum.
79
,
063104
(
2008
).
16.
M. L.
Qiu
 et al.,
J. Phys. B: At. Mol. Opt. Phys.
47
,
175002
(
2014
).
17.
R.
Schuch
 et al.,
J. Instrum.
5
,
C12018
(
2010
).
18.
P.
Beiersdorfer
 et al.,
J. Phys. B: At. Mol. Opt. Phys.
43
,
144008
(
2010
).
19.
See www.comsol.com for information about the COMSOL5.5 software product suite.
20.
J.
Xiao
 et al.,
Rev. Sci. Instrum.
79
,
093101
(
2008
).
21.
M. A.
Blessenohl
 et al.,
Rev. Sci. Instrum.
89
,
052401
(
2018
).
You do not currently have access to this content.