Associated particle imaging (API) is a non-destructive nuclear technique for the 3D determination of isotopic distributions. By detecting the alpha particle associated with the emitted neutron in the deuterium–tritium fusion reaction with a position- and time-resolving detector, the direction of the 14.1 MeV neutron and its time of emission can be determined. Employing this method, isotope characteristic gamma rays emitted in inelastic neutron scattering events can be correlated with the neutron interaction location. An API system consisting of a sealed-type neutron generator, gamma detectors, and a position-sensitive alpha detector was designed, constructed, and characterized. The system was tested with common soil elements and shown to be sensitive to 12C, 16O, 28Si, 27Al, and 56Fe. New aspects of our approach are the use of a yttrium–aluminum–perovskite scintillator, using a sapphire window instead of a fiber-optic faceplate for light transport to the photomultiplier, and the all-digital data acquisition system. We present a description of the system with simulations and experimental results that show a position resolution on the alpha detector of 1 mm, a depth resolution using a LaBr3 detector of 6.2 cm, and an angular resolution of 4.5°. Additionally, we present single-element gamma response measurements for the elements mentioned above together with a comparison to Monte Carlo simulations (MCNP6).

1.
P. L.
Okhuysen
,
E. W.
Bennett
,
J. B.
Ashe
, and
W. E.
Millett
, “
Detection of fast neutrons by the associated particle method
,”
Rev. Sci. Instrum.
29
,
982
985
(
1958
).
2.
J.
Csikai
,
CRC Handbook of Fast Neutron Generators
(
CRC
,
Boca Raton, FL
,
1987
).
3.
A.
Beyerle
,
R.
Durkee
,
G.
Headley
,
J. P.
Hurley
, and
L.
Tunnell
, “
Associated particle imaging
,” in
Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference
(
IEEE
,
1991
), Vol. 2, pp.
1298
1304
.
4.
C. L.
Fontana
,
A.
Carnera
,
M.
Lunardon
,
F.
Pino
,
C.
Sada
,
F.
Soramel
,
L.
Stevanato
,
G.
Nebbia
,
C.
Carasco
,
B.
Perot
,
A.
Sardet
,
G.
Sannie
,
A.
Iovene
,
C.
Tintori
,
K.
Grodzicki
,
M.
Moszyński
,
P.
Sibczyński
,
L.
Swiderski
, and
S.
Moretto
, “
Detection system of the first rapidly relocatable tagged neutron inspection system (RRTNIS), developed in the framework of the European H2020 C-BORD project
,”
Phys. Procedia
90
,
279
284
(
2017
), Conference on the Application of Accelerators in Research and Industry, CAARI 2016, 30 October–4 November 2016, Ft. Worth, TX, USA.
5.
C.
Carasco
,
B.
Perot
,
S.
Bernard
,
A.
Mariani
,
J.-L.
Szabo
,
G.
Sannie
,
T.
Roll
,
V.
Valkovic
,
D.
Sudac
,
G.
Viesti
,
M.
Lunardon
,
C.
Bottosso
,
D.
Fabris
,
G.
Nebbia
,
S.
Pesente
,
S.
Moretto
,
A.
Zenoni
,
A.
Donzella
,
M.
Moszynski
,
M.
Gierlik
,
T.
Batsch
,
D.
Wolski
,
W.
Klamra
,
P.
Le Tourneur
,
M.
Lhuissier
,
A.
Colonna
,
C.
Tintori
,
P.
Peerani
,
V.
Sequeira
, and
M.
Salvato
, “
In-field tests of the EURITRACK tagged neutron inspection system
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
588
,
397
405
(
2008
).
6.
P. A.
Hausladen
,
P. R.
Bingham
,
J. S.
Neal
,
J. A.
Mullens
, and
J. T.
Mihalczo
, “
Portable fast-neutron radiography with the nuclear materials identification system for fissile material transfers
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
261
,
387
390
(
2007
), The Application of Accelerators in Research and Industry.
7.
T. A.
Wellington
,
B. A.
Palles
,
J. A.
Mullens
,
J. T.
Mihalczo
,
D. E.
Archer
,
T.
Thompson
,
C. L.
Britton
,
N. D. B.
Ezell
,
M. N.
Ericson
,
E.
Farquhar
,
R.
Lind
, and
J.
Carter
, “
Recent fast neutron imaging measurements with the fieldable nuclear materials identification system
,”
Phys. Procedia
66
,
432
438
(
2015
).
8.
V. Y.
Alexakhin
,
V. M.
Bystritsky
,
N. I.
Zamyatin
,
E. V.
Zubarev
,
A. V.
Krasnoperov
,
V. L.
Rapatsky
,
Y. N.
Rogov
,
A. B.
Sadovsky
,
A. V.
Salamatin
,
R. A.
Salmin
,
M. G.
Sapozhnikov
,
V. M.
Slepnev
,
S. V.
Khabarov
,
E. A.
Razinkov
,
O. G.
Tarasov
, and
G. M.
Nikitin
, “
Detection of diamonds in kimberlite by the tagged neutron method
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
785
,
9
13
(
2015
).
9.
M. L.
Litvak
,
Y. N.
Barmakov
,
S. G.
Belichenko
,
R. R.
Bestaev
,
E. P.
Bogolubov
,
A. V.
Gavrychenkov
,
A. S.
Kozyrev
,
I. G.
Mitrofanov
,
A. V.
Nosov
,
A. B.
Sanin
,
V. N.
Shvetsov
,
D. I.
Yurkov
, and
V. I.
Zverev
, “
Associated particle imaging instrumentation for future planetary surface missions
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
922
,
19
27
(
2019
).
10.
J.
Sanderman
,
T.
Hengl
, and
G. J.
Fiske
, “
Soil carbon debt of 12 000 years of human land use
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
9575
9580
(
2017
).
11.
J.
Huang
,
B.
Minasny
,
A. B.
McBratney
,
J.
Padarian
, and
J.
Triantafilis
, “
The location- and scale- specific correlation between temperature and soil carbon sequestration across the globe
,”
Sci. Total Environ.
615
,
540
548
(
2018
).
12.
D.-S.
Veres
, “
A comparative study between loss on ignition and total carbon analysis on Late Glacial sediments from Atteköps mosse, southwestern Sweden, and their tentative correlation with the GRIP event stratigraphy
,” Department of Geology: Dissertations in Geology at Lund University, Report No. 145, ID: 2343570, date added to LUP, 2012-12-04. (
2001
), student Paper. https://lup.lub.lu.se/student-papers/search/publication/2343570
13.
See https://arpa-e.energy.gov/?q=arpa-e-programs/roots for ARPA-e ROOTS Program (
2018
).
14.
L.
Wielopolski
,
I.
Orion
,
G.
Hendrey
, and
H.
Roger
, “
Soil carbon measurements using inelastic neutron scattering
,”
IEEE Trans. Nucl. Sci.
47
,
914
917
(
2000
).
15.
L.
Wielopolski
,
G.
Hendrey
,
K. H.
Johnsen
,
S.
Mitra
,
S. A.
Prior
,
H. H.
Rogers
, and
H. A.
Torbert
, “
Nondestructive system for analyzing carbon in the soil
,”
Soil Sci. Soc. Am. J.
72
,
1269
1277
(
2008
).
16.
A.
Kavetskiy
,
G.
Yakubova
,
S. A.
Prior
, and
H. A.
Torbert
, “
Application of associated particle neutron techniques for soil carbon analysis
,”
AIP Conf. Proc.
2160
,
050006
(
2019
).
17.
A.
Kavetskiy
,
S.
Prior
,
H.
Torbert
, and
G.
Yakubova
, “
Application of Neutron-Gamma technologies in agriculture
,”
Trans. Am. Nucl. Soc.
121
,
539
541
(
2019
).
18.
G.
Yakubova
,
A.
Kavetskiy
,
S. A.
Prior
, and
H. A.
Torbert
, “
Benchmarking the inelastic neutron scattering soil carbon method
,”
Vadose Zone J.
15
,
vzj2015.04.0056
(
2016
).
19.
Adelphi Technology Inc.
, http://adelphitech.com/,
2018
.
20.
CRYTUR, spol. s r.o.
, https://crytur.cz,
2018
.
22.
XIA LLC
, https://xia.com,
2018
.
23.
M. A.
Unzueta
,
W.
Mixter
,
Z.
Croft
,
J.
Joseph
,
B.
Ludewigt
, and
A.
Persaud
, “
Position sensitive alpha detector for an associated particle imaging system
,”
AIP Conf. Proc.
2160
,
050005
(
2019
).
24.
M.
Moszyński
,
M.
Kapusta
,
D.
Wolski
,
W.
Klamra
, and
B.
Cederwall
, “
Properties of the YAP:Ce scintillator
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
404
,
157
165
(
1998
).
25.
COMSOL Multiphysics v. 5.2, see https://www.comsol.com,
2018
.
26.
Refractive Index Database, see https://refractiveindex.info,
2019
.
27.
LTspice from Analog Devices, see https://www.analog.com/LTspice,
2018
.
28.
M. A.
Unzueta
,
T.
Tak
,
B.
Ludewigt
, and
A.
Persaud
(
2020
). “
Data, analysis scripts, and simulations files for ‘an all-digital associated particle imaging system for the 3D determination of isotopic distributions’
,” Zenodo.
29.
X.
Zhang
,
J. P.
Hayward
,
J. W.
Cates
,
P. A.
Hausladen
,
M. A.
Laubach
,
J. E.
Sparger
, and
S. B.
Donnald
, “
Benchmarking the GEANT4 full system simulation of an associated alpha-particle detector for use in a D–T neutron generator
,”
Appl. Radiat. Isot.
70
,
1485
1493
(
2012
).
30.
M.
Ayllon Unzueta
, “
An associated particle imaging system for the determination of 3D isotopic distributions
,” Ph.D. thesis,
UC Berkeley
,
2020
.
31.
T.
Goorley
,
M.
James
,
T.
Booth
,
F.
Brown
,
J.
Bull
,
L. J.
Cox
,
J.
Durkee
,
J.
Elson
,
M.
Fensin
,
R. A.
Forster
 et al., “
Initial MCNP6 release overview
,”
Nucl. Technol.
180
,
298
315
(
2012
).
32.
D. A.
Brown
 et al., “
ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data
,”
Nucl. Data Sheets
148
,
1
142
(
2018
), Special Issue on Nuclear Reaction Data.
33.
M.-L.
Mauborgne
,
F.
Allioli
,
M.
Manclossi
,
L.
Nicoletti
,
C.
Stoller
, and
M.
Evans
, “
Designing tools for oil exploration using nuclear modeling
,”
EPJ Web Conf.
146
,
09036
(
2017
).
34.
J. W.
Cates
,
J. P.
Hayward
, and
X.
Zhang
, “
Achievable position resolution of an alpha detector with continuous spatial response for use in associated particle imaging
,” in
2013 IEEE Nuclear Science Symposium and Medical Imaging Conference
(
2013 NSS/MIC
,
2013
), pp.
1
3
.
35.
W. K.
Warburton
and
W.
Hennig
, “
New algorithms for improved digital pulse arrival timing with Sub-GSps ADCs
,”
IEEE Trans. Nucl. Sci.
64
,
2938
2950
(
2017
).
You do not currently have access to this content.