Magnetic heating, namely, the use of heat released by magnetic nanoparticles (MNPs) excited with a high-frequency magnetic field, has so far been mainly used for biological applications. More recently, it has been shown that this heat can be used to catalyze chemical reactions, some of them occurring at temperatures up to 700 °C. The full exploitation of MNP heating properties requires the knowledge of the temperature dependence of their heating power up to high temperatures. Here, a setup to perform such measurements is described based on the use of a pyrometer for high-temperature measurements and on a protocol based on the acquisition of cooling curves, which allows us to take into account calorimeter losses. We demonstrate that the setup permits to perform measurements under a controlled atmosphere on solid state samples up to 550 °C. It should in principle be able to perform measurements up to 900 °C. The method, uncertainties, and possible artifacts are described and analyzed in detail. The influence on losses of putting under vacuum different parts of the calorimeter is measured. To illustrate the setup possibilities, the temperature dependence of heating power is measured on four samples displaying very different behaviors. Their heating power increases or decreases with temperature, displaying temperature sensibilities ranging from −2.5 to +4.4% K−1. This setup is useful to characterize the MNPs for magnetically heated catalysis applications and to produce data that will be used to test models permitting to predict the temperature dependence of MNP heating power.
Skip Nav Destination
,
,
,
,
,
,
,
,
,
Article navigation
May 2021
Research Article|
May 19 2021
A setup to measure the temperature-dependent heating power of magnetically heated nanoparticles up to high temperature Available to Purchase
N. Mille;
N. Mille
1
Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS
, 135 av. de Rangueil, 31077 Toulouse Cedex, France
Search for other works by this author on:
S. Faure
;
S. Faure
1
Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS
, 135 av. de Rangueil, 31077 Toulouse Cedex, France
Search for other works by this author on:
M. Estrader;
M. Estrader
a)
1
Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS
, 135 av. de Rangueil, 31077 Toulouse Cedex, France
Search for other works by this author on:
D. Yi;
D. Yi
1
Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS
, 135 av. de Rangueil, 31077 Toulouse Cedex, France
Search for other works by this author on:
J. Marbaix;
J. Marbaix
1
Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS
, 135 av. de Rangueil, 31077 Toulouse Cedex, France
Search for other works by this author on:
D. De Masi;
D. De Masi
1
Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS
, 135 av. de Rangueil, 31077 Toulouse Cedex, France
Search for other works by this author on:
K. Soulantica
;
K. Soulantica
1
Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS
, 135 av. de Rangueil, 31077 Toulouse Cedex, France
Search for other works by this author on:
A. Millán;
A. Millán
2
Instituto de Ciencia de Materiales de Aragón, Facultad de Ciencias
, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
Search for other works by this author on:
B. Chaudret;
B. Chaudret
1
Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS
, 135 av. de Rangueil, 31077 Toulouse Cedex, France
Search for other works by this author on:
J. Carrey
J. Carrey
b)
1
Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS
, 135 av. de Rangueil, 31077 Toulouse Cedex, France
b)Author to whom correspondence should be addressed: [email protected]
Search for other works by this author on:
N. Mille
1
S. Faure
1
M. Estrader
1,a)
D. Yi
1
J. Marbaix
1
D. De Masi
1
K. Soulantica
1
A. Millán
2
B. Chaudret
1
J. Carrey
1,b)
1
Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS
, 135 av. de Rangueil, 31077 Toulouse Cedex, France
2
Instituto de Ciencia de Materiales de Aragón, Facultad de Ciencias
, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
a)
Present address: Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain and Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain.
b)Author to whom correspondence should be addressed: [email protected]
Rev. Sci. Instrum. 92, 054905 (2021)
Article history
Received:
November 27 2020
Accepted:
May 03 2021
Citation
N. Mille, S. Faure, M. Estrader, D. Yi, J. Marbaix, D. De Masi, K. Soulantica, A. Millán, B. Chaudret, J. Carrey; A setup to measure the temperature-dependent heating power of magnetically heated nanoparticles up to high temperature. Rev. Sci. Instrum. 1 May 2021; 92 (5): 054905. https://doi.org/10.1063/5.0038912
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Overview of the early campaign diagnostics for the SPARC tokamak (invited)
M. L. Reinke, I. Abramovic, et al.
Controlled partial gravity platform for milligravity in drop tower experiments
Kolja Joeris, Matthias Keulen, et al.
An instrumentation guide to measuring thermal conductivity using frequency domain thermoreflectance (FDTR)
Dylan J. Kirsch, Joshua Martin, et al.
Related Content
Ultrasound generation and high-frequency motion of magnetic nanoparticles in an alternating magnetic field: Toward intracellular ultrasound therapy?
Appl. Phys. Lett. (June 2013)
An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples—A useful setup for magnetic hyperthermia applications
Rev. Sci. Instrum. (September 2014)
Improving energy efficiency of magnetic CO2 methanation by modifying coil design, heating agents, and by using eddy currents as the complementary heating source
J. Appl. Phys. (January 2021)