Magnetic heating, namely, the use of heat released by magnetic nanoparticles (MNPs) excited with a high-frequency magnetic field, has so far been mainly used for biological applications. More recently, it has been shown that this heat can be used to catalyze chemical reactions, some of them occurring at temperatures up to 700 °C. The full exploitation of MNP heating properties requires the knowledge of the temperature dependence of their heating power up to high temperatures. Here, a setup to perform such measurements is described based on the use of a pyrometer for high-temperature measurements and on a protocol based on the acquisition of cooling curves, which allows us to take into account calorimeter losses. We demonstrate that the setup permits to perform measurements under a controlled atmosphere on solid state samples up to 550 °C. It should in principle be able to perform measurements up to 900 °C. The method, uncertainties, and possible artifacts are described and analyzed in detail. The influence on losses of putting under vacuum different parts of the calorimeter is measured. To illustrate the setup possibilities, the temperature dependence of heating power is measured on four samples displaying very different behaviors. Their heating power increases or decreases with temperature, displaying temperature sensibilities ranging from −2.5 to +4.4% K−1. This setup is useful to characterize the MNPs for magnetically heated catalysis applications and to produce data that will be used to test models permitting to predict the temperature dependence of MNP heating power.

1.
E. A.
Périgo
,
G.
Hemery
,
O.
Sandre
,
D.
Ortega
,
E.
Garaio
,
F.
Plazaola
, and
F. J.
Teran
, “
Fundamentals and advances in magnetic hyperthermia
,”
Appl. Phys. Rev.
2
(
4
),
041302
(
2015
).
2.
S.
Ceylan
,
C.
Friese
,
C.
Lammel
,
K.
Mazac
, and
A.
Kirschning
, “
Inductive heating for organic synthesis by using functionalized magnetic nanoparticles inside microreactors
,”
Angew. Chem., Int. Ed.
47
(
46
),
8950
8953
(
2008
).
3.
Y.
Schaafsma
, “
Improvements in or relating to supplying heat to fluids
,” GB925025A,
May 1, 1963
.
4.
C.
Friese
,
A.
Kirschning
,
J.
Wichelhaus
, and
S. V.
Ceylan
, “
Method for carrying out chemical reactions with the aid of an inductively heated heating medium
,” International patent WO/2009/074373 (
19 June 2009
).
5.
S.
Ceylan
,
L.
Coutable
,
J.
Wegner
, and
A.
Kirschning
, “
Inductive heating with magnetic materials inside flow reactors
,”
Chem.-Eur. J.
17
(
6
),
1884
1893
(
2011
).
6.
J.
Hartwig
,
S.
Ceylan
,
L.
Kupracz
,
L.
Coutable
, and
A.
Kirschning
, “
Heating under high-frequency inductive conditions: Application to the continuous synthesis of the neurolepticum olanzapine (Zyprexa)
,”
Angew. Chem., Int. Ed.
52
(
37
),
9813
9817
(
2013
).
7.
A.
Meffre
,
B.
Mehdaoui
,
V.
Connord
,
J.
Carrey
,
P. F.
Fazzini
,
S.
Lachaize
,
M.
Respaud
, and
B.
Chaudret
, “
Complex nano-objects displaying both magnetic and catalytic properties: A proof of concept for magnetically induced heterogeneous catalysis
,”
Nano Lett.
15
(
5
),
3241
3248
(
2015
).
8.
A.
Bordet
,
L.-M.
Lacroix
,
P.-F.
Fazzini
,
J.
Carrey
,
K.
Soulantica
, and
B.
Chaudret
, “
Magnetically induced continuous CO2 hydrogenation using composite iron carbide nanoparticles of exceptionally high heating power
,”
Angew. Chem., Int. Ed.
55
(
51
),
15894
15898
(
2016
).
9.
Y.
Liu
,
N.
Cherkasov
,
P.
Gao
,
J.
Fernández
,
M. R.
Lees
, and
E. V.
Rebrov
, “
The enhancement of direct amide synthesis reaction rate over TiO2@SiO2@NiFe2O4 magnetic catalysts in the continuous flow under radiofrequency heating
,”
J. Catal.
355
,
120
130
(
2017
).
10.
P. M.
Mortensen
,
J. S.
Engbæk
,
S. B.
Vendelbo
,
M. F.
Hansen
, and
M.
Østberg
, “
Direct hysteresis heating of catalytically active Ni–Co nanoparticles as steam reforming catalyst
,”
Ind. Eng. Chem. Res.
56
(
47
),
14006
14013
(
2017
).
11.
M. G.
Vinum
,
M. R.
Almind
,
J. S.
Engbæk
,
S. B.
Vendelbo
,
M. F.
Hansen
,
C.
Frandsen
,
J.
Bendix
, and
P. M.
Mortensen
, “
Dual-function cobalt–nickel nanoparticles tailored for high-temperature induction-heated steam methane reforming
,”
Angew. Chem., Int. Ed.
57
(
33
),
10569
10573
(
2018
).
12.
W.
Wang
,
C.
Duong-Viet
,
Z.
Xu
,
H.
Ba
,
G.
Tuci
,
G.
Giambastiani
,
Y.
Liu
,
T.
Truong-Huu
,
J.-M.
Nhut
, and
C.
Pham-Huu
, “
CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating
,”
Catal. Today
357
,
214
(
2019
).
13.
W.
Wang
,
G.
Tuci
,
C.
Duong-Viet
,
Y.
Liu
,
A.
Rossin
,
L.
Luconi
,
J.-M.
Nhut
,
L.
Nguyen-Dinh
,
C.
Pham-Huu
, and
G.
Giambastiani
, “
Induction heating: An enabling technology for the heat management in catalytic processes
,”
ACS Catal
.
9
,
7921
7935
(
2019
).
14.
J.
Marbaix
,
N.
Mille
,
L.-M.
Lacroix
,
J. M.
Asensio
,
P.-F.
Fazzini
,
K.
Soulantica
,
J.
Carrey
, and
B.
Chaudret
, “
Tuning the composition of FeCo nanoparticle heating agents for magnetically induced catalysis
,”
ACS Appl. Nano Mater.
3
(
4
),
3767
3778
(
2020
).
15.
M.
Veverka
,
P.
Veverka
,
O.
Kaman
,
A.
Lančok
,
K.
Závěta
,
E.
Pollert
,
K.
Knížek
,
J.
Boháček
,
M.
Beneš
,
P.
Kašpar
,
E.
Duguet
, and
S.
Vasseur
, “
Magnetic heating by cobalt ferrite nanoparticles
,”
Nanotechnology
18
(
34
),
345704
(
2007
).
16.
E.
Garaio
,
O.
Sandre
,
J.-M.
Collantes
,
J. A.
Garcia
,
S.
Mornet
, and
F.
Plazaola
, “
Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)
,”
Nanotechnology
26
(
1
),
015704
(
2014
).
17.
E.
Natividad
,
M.
Castro
, and
A.
Mediano
, “
Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields
,”
Appl. Phys. Lett.
98
(
24
),
243119
(
2011
).
18.
E.
Natividad
and
I.
Andreu
, “
Omitting the need of external heat capacity data in an adiabatic magnetothermal setup devoted to the characterization of nanomaterials for magnetic hyperthermia
,”
Appl. Therm. Eng.
117
,
409
416
(
2017
).
19.
M.
Coïsson
,
G.
Barrera
,
C.
Appino
,
F.
Celegato
,
L.
Martino
,
A. P.
Safronov
,
G. V.
Kurlyandskaya
, and
P.
Tiberto
, “
Specific loss power measurements by calorimetric and thermal methods on γ-Fe2O3 nanoparticles for magnetic hyperthermia
,”
J. Magn. Magn. Mater.
473
,
403
409
(
2018
).
20.
F.
Varsano
,
M.
Bellusci
,
A.
La Barbera
,
M.
Petrecca
,
M.
Albino
, and
C.
Sangregorio
, “
Dry reforming of methane powered by magnetic induction
,”
Int. J. Hydrogen Energy
44
,
21037
(
2019
).
21.
P.
Uprety
,
M. M.
Junda
, and
N. J.
Podraza
, “
Optical properties of borosilicate glass from 3.1 mm to 210 nm (0.4 meV to 5.89 eV) by spectroscopic ellipsometry
,”
Surf. Sci. Spectra
24
(
2
),
026003
(
2017
).
22.
M.
He
,
W.
Yan
,
Y.
Chang
,
K.
Liu
, and
X.
Liu
, “
Fundamental infrared absorption features of α-quartz: An unpolarized single-crystal absorption infrared spectroscopic study
,”
Vib. Spectrosc.
101
,
52
63
(
2019
).
23.
See https://numpy.org/doc/stable/reference/generated/numpy.gradient.html for numpy.gradient—NumPy v1.20 manual; accessed March 11, 2021.
25.
Transmetra Company, Table of Emissivity of Various Surfaces.
26.
See https://www.bipm.org/en/publications/guides/gum.html for BIPM—Guide to the Expression of Uncertainty in Measurement (GUM); accessed March 11, 2021.
27.
Y. S.
Touloukian
and
E. H.
Buyco
,
Thermophysical Properties of Matter
, The TPRC Data Series Vol. 4, Specific Heat: Metallic Elements and Alloys (
Thermophysical and Electronic Properties Information Analysis Center
,
Lafayette, IN
,
1971
).
28.
Y. S.
Touloukian
and
E. H.
Buyco
,
Thermophysical Properties of Matter
, The TPRC Data Series Vol. 5, Specific Heat: Nonmetallic Solids (
Thermophysical and Electronic Properties Information Analysis Center
,
Lafayette, IN
,
1970
).
29.
R.
Taherian
, “
7—Application of polymer-based composites: Bipolar plate of PEM fuel cells
,” in
Electrical Conductivity in Polymer-Based Composites
, edited by
R.
Taherian
and
A.
Kausar
(
Plastics Design Library; William Andrew Publishing
,
2019
), pp.
183
237
.
30.
A. T. D.
Butland
and
R. J.
Maddison
, “
The specific heat of graphite: An evaluation of measurements
,”
J. Nucl. Mater.
49
(
1
),
45
56
(
1973
).
31.
F.
Fiorillo
, Measurement and characterization of magnetic materials, https://cds.cern.ch/record/887174; accessed March 11, 2021.
32.
E. J.
Davies
,
Conduction and Induction Heating
(
IET Digital Library
,
1990
).
33.
R.
Massart
, “
Preparation of aqueous magnetic liquids in alkaline and acidic media
,”
IEEE Trans. Magn.
17
(
2
),
1247
1248
(
1981
).
34.
J.
Carrey
,
B.
Mehdaoui
, and
M.
Respaud
, “
Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization
,”
J. Appl. Phys.
109
(
8
),
083921
(
2011
).
35.
B.
Cormary
,
T.
Li
,
N.
Liakakos
,
L.
Peres
,
P.-F.
Fazzini
,
T.
Blon
,
M.
Respaud
,
A. J.
Kropf
,
B.
Chaudret
,
J. T.
Miller
,
E. A.
Mader
, and
K.
Soulantica
, “
Concerted growth and ordering of cobalt nanorod arrays as revealed by tandem in situ SAXS-XAS studies
,”
J. Am. Chem. Soc.
138
(
27
),
8422
8431
(
2016
).
36.
S. S.
Kale
,
J. M.
Asensio
,
M.
Estrader
,
M.
Werner
,
A.
Bordet
,
D.
Yi
,
J.
Marbaix
,
P.-F.
Fazzini
,
K.
Soulantica
, and
B.
Chaudret
, “
Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlOx catalysts
,”
Catal. Sci. Technol.
9
(
10
),
2601
2607
(
2019
).
37.
S.
Lentijo-Mozo
,
R. P.
Tan
,
C.
Garcia-Marcelot
,
T.
Altantzis
,
P.-F.
Fazzini
,
T.
Hungria
,
B.
Cormary
,
J. R.
Gallagher
,
J. T.
Miller
,
H.
Martinez
,
S.
Schrittwieser
,
J.
Schotter
,
M.
Respaud
,
S.
Bals
,
G. V.
Tendeloo
,
C.
Gatel
, and
K.
Soulantica
, “
Air- and water-resistant noble metal coated ferromagnetic cobalt nanorods
,”
ACS Nano
9
(
3
),
2792
2804
(
2015
).
38.
W. J.
Carr
, “
Temperature dependence of ferromagnetic anisotropy
,”
Phys. Rev.
109
(
6
),
1971
1976
(
1958
).
39.
M.
Takahashi
,
S.
Kadowaki
,
T.
Wakiyama
,
T.
Anayama
, and
M.
Takahashi
, “
Magnetocrystalline anisotropy of Co and Co–Ni alloys
,”
J. Phys. Soc. Jpn.
44
(
3
),
825
832
(
1978
).
You do not currently have access to this content.