An all-solid-state microsecond pulsed power system has been tested in this paper. It can produce larger than 50 kV and microsecond-range pulses continuously for more than 9 × 104 shots into a resistive load at a repetition rate of 10 pps. The whole device has accumulatively operated more than 15 000 pulses at 100 Hz and 3 × 105 pulses at 10 Hz. This all-solid-state pulsed power system consists of a repetitive power supply, a four-stage Marx generator, a pulse forming network, and a resistive load. The repetitive power supply of the pulsed power system is calculated and analyzed first, followed by the introduction of the Marx generator and the three-section anti-resonance network. A polymer box of sodium chloride solution is applied as a resistive load with an impedance of 200 Ω. Repetitive experiments showed that this system is able to operate stably at 100 Hz repetition rate without failure.

1.
M. U.
Farooq
,
A.
Chioza
, and
S.
Ohga
, “
Vegetative development of sparassis crispa in various growth conditions and effect of electric pulse simulation on its fruit body production
,”
Adv. Microbiol.
04
(
5
),
267
274
(
2014
).
2.
I.
Ferzana
,
I.
Afsana
, and
O.
Shoji
, “
Effect electric pulse application on the fruit body production of Tricholoma matsutake-In situ condition
,”
Korean J. Agric. Sci.
40
,
13
(
2013
).
3.
S.
Toepfl
, “
Pulsed electric field food treatment—Scale up from lab to industrial scale
,”
Procedia Food Sci.
1
,
776
(
2011
).
4.
S.-Y.
Tseng
,
T.-F.
Wu
, and
M.-W.
Wu
, “
Bipolar narrow-pulse generator with energy-recovery feature for liquid-food sterilization
,”
IEEE Trans. Ind. Electron.
55
(
1
),
123
132
(
2008
).
5.
D. J.
Hemmert
and
V. I.
Smirnov
, “
Consumer electronic waste recycling using pulsed power generated shockwaves
,” in
IEEE Power Modulator and High Voltage Conference
,
2010
.
6.
H. P.
Li
,
X. F.
Zhang
,
X. M.
Zhu
et al., “
Translational plasma stomatology: Applications of cold atmospheric plasmas in dentistry and their extension
,”
High Voltage
2
(
3
),
188
199
(
2017
).
7.
Y.
Manabe
,
R.
Nakagawa
,
S.
Zhehong
 et al., “
Influences of pulsed electric fields on the gene expression of pathogenic bacteria
,” in
Pulsed Power Conference
(
IEEE
,
2011
).
8.
L.
Nie
,
D.
Xing
,
D.
Yang
 et al., “
Detection of foreign body using fast thermoacoustic tomography with a multielement linear transducer array
,”
Appl. Phys. Lett.
90
(
17
),
275
(
2007
).
9.
Z.
Liu
,
A. J. M.
Pemen
,
R. T. W.
Van Hoppe
et al., “
An efficient, repetitive nanosecond pulsed power generator with ten synchronized spark gap switches
,”
IEEE Trans. Dielectr. Electr. Insul.
16
(
4
),
918
925
(
2009
).
10.
G. N.
Holland
and
E.
Heysmond
, “
A solid state high-power RF amplifier for pulsed NMR
,”
J. Phys. E: Sci. Instrum.
12
(
6
),
480
(
1979
).
11.
A.
Bulliard
and
B. A.
Hoegger
, “
Light‐operated solid‐state switch for pulsed microwave power generator
,”
Rev. Sci. Instrum.
51
(
11
),
1571
1573
(
1980
).
12.
M.
Inokuchi
,
M.
Akiyama
,
T.
Sakugawa
 et al., “
Development of miniature Marx generator using BJT
,” in
IEEE Pulsed Power Conference
(
IEEE
,
2009
).
13.
J.-H.
Kim
,
B.-D.
Min
,
S. V.
Shenderey
et al., “
High voltage pulsed power supply using IGBT stacks
,”
IEEE Trans. Dielectr. Electr. Insul.
14
(
4
),
921
926
(
2007
).
14.
B.
Hickman
and
E.
Cook
, “
Evaluation of MOSFETs and IGBTs for pulsed power applications
,” in
Pulsed Power Plasma Science, 2001. PPPS-2001. Digest of Technical Papers
(
IEEE Xplore
,
2001
).
15.
S.
Scharnholz
,
V.
Brommer
 et al., “
High-power MOSFETs and fast-switching thyristors utilized as opening switches for inductive storage systems
,”
IEEE Trans. Magn.
39
,
437
(
2003
).
16.
R.
Ness
,
P.
Melcher
,
G.
Ferguson
, and
C.
Huang
, “
A decade of solid state pulsed power development at Cymer, Inc.
,” in
26th International Power Modulator Symposium/High-Voltage Workshop
(
IEEE
,
San Francisco, CA
,
2004
), pp.
228
233
.
17.
A.
Bertolini
,
N.
Beverini
,
G.
Carelli
et al., “
Solid-state power supply for gas lasers
,”
Rev. Sci. Instrum.
75
(
8
),
2686
2691
(
2004
).
18.
T.
Sakugawa
and
H.
Akiyama
, “
An all-solid-state pulsed power generator using a high-speed gate-turn-off thyristor and a saturable transformer
,”
Electr. Eng. Jpn.
140
(
4
),
17
26
(
2002
).
19.
W.
Jiang
,
K.
Yatsui
,
K.
Takayama
 et al., “
Compact solid-State switched pulsed power and its applications
,”
Proc. IEEE
92
(
7
),
1180
1196
(
2004
).
20.
R.
Chen
,
J.
Yang
,
X.
Cheng
 et al., “
Research of a fractional-turn ratio saturable pulse transformer and its application in a microsecond-range pulse modulator
,”
Plasma Sci. Technol.
19
(
6
),
95
101
(
2017
).
21.
C.
Rong
,
Y.
Jianhua
,
C.
Xinbing
 et al., “
Developing a solid-state quasi-square pulse Marx generator
,”
Rev. Sci. Instrum.
89
(
6
),
064707
(
2018
).
22.
Z.-L.
Pan
,
J.-H.
Yang
, and
X.-B.
Cheng
, “
Research of the anti-resonance pulse forming network and its application in the Marx generator
,”
Laser Part. Beams
34
(
04
),
675
686
(
2016
).
You do not currently have access to this content.