We developed a novel imaging mass spectrometer based on our accumulating technology for projection-type imaging mass spectrometry, the simulation of an accurate ion trajectory, and the theory for ion optics. The newly developed apparatus yields high spatial resolution with a substantially shorter image-acquisition time compared with conventional scanning-type imaging mass spectrometers. In order to maintain a high mass resolution, a multi-turn time-of-flight mass spectrometer is combined with post-extraction differential acceleration methods. Consequently, a mass resolution of mm ∼ 10 000 and a spatial resolution of 1 μm were achieved simultaneously in this study. Application of our newly established apparatus to biological samples accomplished successful imaging mass spectrometry by exhibiting an organ-specific distribution of endogenous ions as well as a localized distribution of exogenously applied ions with an ultra-high spatial resolution image in the size of 18.5 megapixels.

1.
M.
Karas
,
D.
Bachmann
,
U.
Bahr
, and
F.
Hillenkamp
,
Int. J. Mass Spectrom. Ion Processes
78
,
53
(
1987
).
2.
S. M.
Colby
,
T. B.
King
,
J. P.
Reilly
, and
D. M.
Lubman
,
Rapid Commun. Mass Spectrom.
8
,
865
(
1994
).
3.
R. S.
Brown
and
J. J.
Lennon
,
Anal. Chem.
67
,
1998
(
1995
).
4.
F.
Hillenkamp
,
M.
Karas
,
R. C.
Beavis
, and
B. T.
Chait
,
Anal. Chem.
63
,
1193A
(
1991
).
5.
R. M.
Caprioli
,
T. B.
Farmer
, and
J.
Gile
,
Anal. Chem.
69
,
4751
(
1997
).
6.
L. A.
McDonnell
and
R. M. A.
Heeren
,
Mass Spectrom. Rev.
26
,
606
(
2007
).
7.
A. R.
Buchberger
,
K.
DeLaney
,
J.
Johnson
, and
L.
Li
,
Anal. Chem.
90
,
240
(
2018
).
8.
S.
Sijbrandij
,
A.
Lombardi
,
A.
Sireuil
,
F.
Khanom
,
B.
Lewis
,
C.
Guillermier
, and
D. R. J.
Notte
,
Microsc. Today
27
,
22
(
2019
).
9.
J.
Wang
,
Z.
Wang
,
F.
Liu
,
L.
Cai
,
J.-b.
Pan
,
Z.
Li
,
S.
Zhang
,
H.-Y.
Chen
,
X.
Zhang
, and
Y.
Mo
,
Anal. Chem.
90
,
10009
(
2018
).
10.
B. W.
Schueler
,
Microsc. Microanal. Microstruct.
3
,
119
(
1992
).
11.
S. L.
Luxembourg
,
T. H.
Mize
,
L. A.
McDonnell
, and
R. M. A.
Heeren
,
Anal. Chem.
76
,
5339
(
2004
).
12.
H.
Hazama
,
H.
Yoshimura
,
J.
Aoki
,
H.
Nagao
,
M.
Toyoda
,
K.
Masuda
,
K.
Fujii
,
T.
Tashima
,
Y.
Naito
, and
K.
Awazu
,
J. Biomed. Opt.
16
,
046007
(
2011
).
13.
M.
Toyoda
,
Eur. J. Mass Spectrom.
16
,
397
(
2010
).
14.
M.
Toyoda
,
D.
Okumura
,
M.
Ishihara
, and
I.
Katakuse
,
J. Mass Spectrom.
38
,
1125
(
2003
).
15.
J.
Aoki
,
A.
Kubo
,
M.
Ishihara
, and
M.
Toyoda
,
Nucl. Instrum. Methods Phys. Res., Sect. A
600
,
466
(
2009
).
16.
H.
Hazama
,
J.
Aoki
,
H.
Nagao
,
R.
Suzuki
,
T.
Tashima
,
K.-i.
Fujii
,
K.
Masuda
,
K.
Awazu
,
M.
Toyoda
, and
Y.
Naito
,
Appl. Surf. Sci.
255
,
1257
(
2008
).
17.
O.
Jagutzki
,
V.
Mergel
,
K.
Ullmann-Pfleger
,
L.
Spielberger
,
U.
Meyer
,
R.
Doerner
, and
H.
Schmidt-Boecking
,
Proc. SPIE
3438
,
328113
(
1998
).
18.
H.
Yoshimura
,
H.
Hazama
,
J.
Aoki
,
M.
Toyoda
,
Y.
Naito
, and
K.
Awazu
,
Jpn. J. Appl. Phys., Part 1
50
,
056701
(
2011
).
19.
T. L.
Colliver
,
C. L.
Brummel
,
M. L.
Pacholski
,
F. D.
Swanek
,
A. G.
Ewing
, and
N.
Winograd
,
Anal. Chem.
69
,
2225
(
1997
).
20.
J.
Aoki
,
H.
Hazama
, and
M.
Toyoda
,
J. Mass Spectrom. Soc. Jpn.
59
,
57
(
2011
).
21.
R.
Arakawa
and
H.
Kawasaki
,
Anal. Sci.
26
,
1229
(
2010
).
You do not currently have access to this content.