The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the ee Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from −20 to −1100 V/mm for Ekin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 μm above the sample surface for Ekin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at Ekin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm2 (retarding field −21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm2, it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at Ekin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments.

1.
T.
Rohwer
,
S.
Hellmann
,
M.
Wiesenmayer
,
C.
Sohrt
,
A.
Stange
,
B.
Slomski
,
A.
Carr
,
Y.
Liu
,
L. M.
Avila
,
M.
Kalläne
,
S.
Mathias
,
L.
Kipp
,
K.
Rossnagel
, and
M.
Bauer
, “
Collapse of long-range charge order tracked by time-resolved photoemission at high momenta
,”
Nature
471
,
490
(
2011
).
2.
F.
Schmitt
,
P. S.
Kirchmann
,
U.
Bovensiepen
,
R. G.
Moore
,
L.
Rettig
,
M.
Krenz
,
J.-H.
Chu
,
N.
Ru
,
L.
Perfetti
,
D. H.
Lu
,
M.
Wolf
,
I. R.
Fisher
, and
Z.-X.
Shen
, “
Transient electronic structure and melting of a charge density wave in TbTe3
,”
Science
321
,
1649
(
2008
).
3.
U.
Bovensiepen
and
P. S.
Kirchmann
, “
Elementary relaxation processes investigated by femtosecond photoelectron spectroscopy of two‐dimensional materials
,”
Laser Photonics Rev.
6
,
589
(
2012
).
4.
C. L.
Smallwood
,
R. A.
Kaindl
, and
A.
Lanzara
, “
Ultrafast angle-resolved photoemission spectroscopy of quantum materials
,”
Europhys. Lett.
115
,
27001
(
2016
).
5.
S.
Aeschlimann
,
A.
Rossi
,
M.
Chávez-Cervantes
,
R.
Krause
,
B.
Arnoldi
,
B.
Stadtmüller
,
M.
Aeschlimann
,
S.
Forti
,
F.
Fabbri
,
C.
Coletti
, and
I.
Gierz
, “
Direct evidence for efficient ultrafast charge separation in epitaxial WS2/graphene heterostructures
,”
Sci. Adv.
6
,
eaay0761
(
2020
).
6.
E. J.
Sie
,
C. M.
Nyby
,
C. D.
Pemmaraju
,
S. J.
Park
,
X.
Shen
,
J.
Yang
,
M. C.
Hoffmann
,
B. K.
Ofori-Okai
,
R.
Li
,
A. H.
Reid
,
S.
Weathersby
,
E.
Mannebach
,
N.
Finney
,
D.
Rhodes
,
D.
Chenet
,
A.
Antony
,
L.
Balicas
,
J.
Hone
,
T. P.
Devereaux
,
T. F.
Heinz
,
X.
Wang
, and
A. M.
Lindenberg
, “
An ultrafast symmetry switch in a Weyl semimetal
,”
Nature
565
,
61
(
2019
).
7.
M.
Dendzik
,
R. P.
Xian
,
E.
Perfetto
,
D.
Sangalli
,
D.
Kutnyakhov
,
S.
Dong
,
S.
Beaulieu
,
T.
Pincelli
,
F.
Pressacco
,
D.
Curcio
,
S. Y.
Agustsson
,
M.
Heber
,
J.
Hauer
,
W.
Wurth
,
G.
Brenner
,
Y.
Acremann
,
P.
Hofmann
,
M.
Wolf
,
A.
Marini
,
G.
Stefanucci
,
L.
Rettig
, and
R.
Ernstorfer
, “
Observation of an excitonic Mott transition through ultrafast core-cum-conduction photoemission spectroscopy
,”
Phys. Rev. Lett.
125
,
096401
(
2020
).
8.
S.
Beaulieu
,
S.
Dong
,
N.
Tancogne-Dejean
,
M.
Dendzik
,
T.
Pincelli
,
J.
Maklar
,
R. P.
Xian
,
M. A.
Sentef
,
M.
Wolf
,
A.
Rubio
,
L.
Rettig
, and
R.
Ernstorfer
, “
Ultrafast light-induced Lifshitz transition
,” arXiv: 2003.04059 (
2020
).
9.
F.
Pressacco
,
D.
Sangalli
,
V.
Uhlír
,
D.
Kutnyakhov
,
J.
Ander Arregi
,
S. Y.
Agustsson
,
G.
Brenner
,
H.
Redlin
,
M.
Heber
,
D.
Vasilyev
,
J.
Demsar
,
G.
Schönhense
,
M.
Gatti
,
A.
Marini
,
W.
Wurth
, and
F.
Sirotti
, “
Subpicosecond metamagnetic phase transition driven by non-equilibrium electron dynamics
arXiv:2102.09265v1 (
2021
).
10.
S.
Hellmann
,
C.
Sohrt
,
M.
Beye
,
T.
Rohwer
,
F.
Sorgenfrei
,
M.
Marczynski-Bühlow
,
M.
Kalläne
,
H.
Redlin
,
F.
Hennies
,
M.
Bauer
,
A.
Föhlisch
,
L.
Kipp
,
W.
Wurth
, and
K.
Rossnagel
, “
Time-resolved x-ray photoelectron spectroscopy at FLASH
,”
New J. Phys.
14
,
013062
(
2012
).
11.
A.
Pietzsch
,
A.
Föhlisch
,
M.
Beye
,
M.
Deppe
,
F.
Hennies
,
M.
Nagasono
,
E.
Suljoti
,
W.
Wurth
,
C.
Gahl
, and
K.
Döbrich
, “
Toward time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers
,”
New J. Phys.
10
,
033004
(
2008
).
12.
L.-P.
Oloff
,
M.
Oura
,
K.
Rossnagel
,
A.
Chainani
,
M.
Matsunami
,
R.
Eguchi
,
T.
Kiss
,
Y.
Nakatani
,
T.
Yamaguchi
,
J.
Miyawaki
,
M.
Taguchi
,
K.
Yamagami
,
T.
Togashi
,
T.
Katayama
,
K.
Ogawa
,
M.
Yabashi
, and
T.
Ishikawa
, “
Time-resolved HAXPES at SACLA: Probe and pump pulse-induced space-charge effects
,”
New J. Phys.
16
,
123045
(
2014
).
13.
S.
Gerber
,
S.-L.
Yang
,
D.
Zhu
,
H.
Soifer
,
J. A.
Sobota
,
S.
Rebec
,
J. J.
Lee
,
T.
Jia
,
B.
Moritz
,
C.
Jia
,
A.
Gauthier
,
Y.
Li
,
D.
Leuenberger
,
Y.
Zhang
,
L.
Chaix
,
W.
Li
,
H.
Jang
,
J.-S.
Lee
,
M.
Yi
,
G. L.
Dakovski
,
S.
Song
,
J. M.
Glownia
,
S.
Nelson
,
K. W.
Kim
,
Y.-D.
Chuang
,
Z.
Hussain
,
R. G.
Moore
,
T. P.
Devereaux
,
W.-S.
Lee
,
P. S.
Kirchmann
, and
Z.-X.
Shen
, “
Femtosecond electron–phonon lock-in by photoemission and x-ray free-electron laser
,”
Science
357
,
71
(
2017
).
14.
M.
Greif
,
L.
Kasmi
,
L.
Castiglioni
,
M.
Lucchini
,
L.
Gallmann
,
U.
Keller
,
J.
Osterwalder
, and
M.
Hengsberger
, “
Access to phases of coherent phonon excitations by femtosecond ultraviolet photoelectron diffraction
,”
Phys. Rev. B
94
,
054309
(
2016
).
15.
G.
Mercurio
,
I. A.
Makhotkin
,
I.
Milov
,
Y. Y.
Kim
,
I. A.
Zaluzhnyy
,
S.
Dziarzhytski
,
L.
Wenthaus
,
I. A.
Vartanyants
, and
W.
Wurth
, “
Surface structure determination by x-ray standing waves at a free electron laser
,”
New J. Phys.
21
,
033031
(
2019
).
16.
D.
Curcio
,
K.
Volckaert
,
D.
Kutnyakhov
,
M.
Bianchi
,
J.
Miwa
,
C.
Sanders
,
S.
Ulstrup
,
M.
Heber
,
F.
Pressacco
,
G.
Brenner
,
S.
Agustsson
,
K.
Bühlmann
,
Y.
Acremann
,
J.
Mi
,
M.
Bremholm
,
J.
Demsar
,
W.
Wurth
, and
P.
Hofmann
, “
Imaging of coherent phonons in Bi2Se3 probed by time-resolved photoelectron diffraction
” (unpublished).
17.
D.
Kutnyakhov
,
P.
Xian
,
M.
Heber
,
F.
Pressacco
,
G.
Mercurio
,
A.
Benz
,
G.
Wenthaus
,
H.
Meyer
,
S.
Gieschen
,
K.
Bühlman
,
S.
Däster
,
R.
Gort
,
D.
Curcio
,
K.
Volckaert
,
M.
Bianchi
,
Ch.
Sanders
,
J.
Miwa
,
S.
Ulstrup
,
A.
Oelsner
,
C.
Tusche
,
Y. J.
Chen
,
S. Y.
Agustsson
,
D.
Vasilyev
,
K.
Medjanik
,
G.
Brenner
,
S.
Dziarzhytski
,
H.
Redlin
,
J.
Hauer
,
M.
Dendzik
,
S.
Dong
,
L.
Rettig
,
J.
Demsar
,
H. J.
Elmers
,
Ph.
Hofmann
,
R.
Ernstorfer
,
G.
Schönhense
,
Y.
Acremann
, and
W.
Wurth
, “
Time- and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser
,”
Rev. Sci. Instrum.
91
,
013109
(
2020
).
18.
R. P.
Xian
,
D.
Kutnyakhov
,
L.
Rettig
,
Y.
Acremann
,
F.
Pressacco
,
S. Y.
Agustsson
,
D.
Curcio
,
M.
Dendzik
,
G.
Brenner
,
H.
Redlin
,
M.
Heber
,
G.
Mercurio
,
S.
Dong
,
J.
Hauer
,
J.
Demsar
,
W.
Wurth
,
P.
Hofmann
,
M.
Scheidgen
, and
R.
Ernstorfer
(
2019
). “
Multidimensional photoemission spectra of tungsten diselenide
,” Zenodo.
19.
M.
Scholz
,
K.
Baumgärtner
,
C.
Metzger
,
D.
Kutnyakhov
,
M.
Heber
,
C. H.
Min
,
T. R. F.
Peixoto
,
M.
Reiser
,
C.
Kim
,
W.
Lu
,
R.
Shayduk
,
W. M.
Izquierdo
,
G.
Brenner
,
F.
Roth
,
F.
Pressacco
,
A.
Schöll
,
S.
Molodtsov
,
W.
Wurth
,
F.
Reinert
, and
A.
Madsen
, “
Ultrafast molecular orbital imaging of a pentacene thin film using a free electron laser
,” arXiv: 1907.10434 (
2019
).
20.
F.
Haag
,
T.
Eul
,
P.
Thielen
,
N.
Haag
,
B.
Stadtmüller
, and
M.
Aeschlimann
, “
Time-resolved two-photon momentum microscopy—A new approach to study hot carrier lifetimes in momentum space
,”
Rev. Sci. Instrum.
90
,
103104
(
2019
).
21.
M.
Keunecke
,
C.
Möller
,
D.
Schmitt
,
H.
Nolte
,
G. S. M.
Jansen
,
M.
Reutzel
,
M.
Gutberlet
,
G.
Halasi
,
D.
Steil
,
S.
Steil
, and
S.
Mathias
, “
Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline
,”
Rev. Sci. Instrum.
91
,
063905
(
2020
).
22.
J.
Madéo
,
M. K. L.
Man
,
C.
Sahoo
,
M.
Campbell
,
V.
Pareek
,
E. L.
Wong
,
A.
Al-Mahboob
,
N. S.
Chan
,
A.
Karmakar
,
B. M. K.
Mariserla
,
X.
Li
,
T. F.
Heinz
,
T.
Cao
, and
K. M.
Dani
, “
Directly visualizing the momentum forbidden dark excitons and their dynamics in atomically thin semiconductors
,”
Science
370
,
1199
1204
(
2020
).
23.
R.
Wallauer
,
R.
Perea-Causin
,
L.
Münster
,
S.
Zajusch
,
S.
Brem
,
J.
Güdde
,
K.
Tanimura
,
K.
Lin
,
R.
Huber
,
E.
Malic
, and
U.
Höfer
, “
Direct observation of ultrafast dark exciton formation in monolayer WS2
,” arXiv: 2012.11385 (
2020
).
24.
J.
Bakalis
 et al., “
Time-resolved ARPES at 88 MHz repetition rate with full 2π electron collection
” (unpublished).
25.
G. S. M.
Jansen
,
M.
Keunecke
,
M.
Düvel
,
C.
Möller
,
D.
Schmitt
,
W.
Bennecke
,
F. J. S.
Kappert
,
D.
Steil
,
D. R.
Luke
,
S.
Steil
, and
S.
Mathias
, “
Sparsity-driven reconstruction of molecular orbitals from angle-resolved photoemission spectroscopy
,” arXiv: 2001.10918 (
2020
).
26.
R.
Wallauer
,
M.
Raths
,
K.
Stallberg
,
L.
Münster
,
D.
Brandstetter
,
X.
Yang
,
J.
Güdde
,
P.
Puschnig
,
S.
Soubatch
,
C.
Kumpf
,
F. C.
Bocquet
,
F. S.
Tautz
, and
U.
Höfer
, “
Tracing orbital images on ultrafast time scales
,”
Science
371
,
1056
(
2021
).
27.
S.
Beaulieu
,
J.
Schusser
,
S.
Dong
,
M.
Schüler
,
T.
Pincelli
,
M.
Dendzik
,
J.
Maklar
,
A.
Neef
,
H.
Ebert
,
K.
Hricovini
,
M.
Wolf
,
J.
Braun
,
L.
Rettig
,
J.
Minár
, and
R.
Ernstorfer
, “
Revealing hidden orbital pseudospin texture with time-reversal dichroism in photoelectron angular distributions
,”
Phys. Rev. Lett.
125
,
216404
(
2020
).
28.
M.
Keunecke
,
M.
Reutzel
,
D.
Schmitt
,
A.
Osterkorn
,
T. A.
Mishra
,
C.
Möller
,
W.
Bennecke
,
G. S. M.
Jansen
,
D.
Steil
,
S. R.
Manmana
,
S.
Steil
,
S.
Kehrein
, and
S.
Mathias
, “
Electromagnetic dressing of the electron energy spectrum of Au(111) at high momenta
,”
Phys. Rev. B
102
,
161403(R)
(
2020
).
29.
O.
Fedchenko
,
A.
Winkelmann
,
K.
Medjanik
,
S.
Babenkov
,
D.
Vasilyev
,
S.
Chernov
,
C.
Schlueter
,
A.
Gloskovskii
,
Y.
Matveyev
,
W.
Drube
,
B.
Schönhense
,
H. J.
Elmers
, and
G.
Schönhense
, “
High-resolution hard-x-ray photoelectron diffraction in a momentum microscope—The model case of graphite
,”
New J. Phys.
21
,
113031
(
2019
).
30.
O.
Fedchenko
,
A.
Winkelmann
,
S.
Chernov
,
K.
Medjanik
,
S.
Babenkov
,
S. Y.
Agustsson
,
D.
Vasilyev
,
M.
Hoesch
,
H.-J.
Elmers
, and
G.
Schönhense
, “
Emitter-site specificity of hard x-ray photoelectron Kikuchi-diffraction
,”
New J. Phys.
22
,
103002
(
2020
).
31.
K.
Medjanik
,
O.
Fedchenko
,
O.
Yastrubchak
,
J.
Sadowski
,
M.
Sawicki
,
L.
Gluba
,
D.
Vasilyev
,
S.
Babenkov
,
S.
Chernov
,
A.
Winkelmann
,
H. J.
Elmers
, and
G.
Schönhense
, “
Site-specific atomic order and band structure tailoring in the diluted magnetic semiconductor (In, Ga, Mn)As
,”
Phys. Rev. B
103
,
075107
(
2021
).
32.
X. J.
Zhou
,
B.
Wannberg
,
W. L.
Yang
,
V.
Brouet
,
Z.
Sun
,
J. F.
Douglas
,
D.
Dessau
,
Z.
Hussain
, and
Z.-X.
Shen
, “
Space charge effect and mirror charge effect in photoemission spectroscopy
,”
J. Electron Spectrosc. Relat. Phenom.
142
,
27
38
(
2005
).
33.
G.
Schiwietz
,
D.
Kühn
,
A.
Föhlisch
,
K.
Holldack
,
T.
Kachel
, and
N.
Pontius
, “
Laser-pump/x-ray-probe experiments with electrons ejected from a Cu(111) target: Space-charge acceleration
,”
J. Synchrotron Radiat.
23
,
1158
1170
(
2016
).
34.
A.
Verna
,
G.
Greco
,
V.
Lollobrigida
,
F.
Offi
, and
G.
Stefani
, “
Space-charge effects in high-energy photoemission
,”
J. Electron Spectrosc. Relat. Phenom.
209
,
14
25
(
2016
).
35.
A.
Verna
,
G.
Stefani
,
F.
Offi
,
T.
Gejo
,
Y.
Tanaka
,
K.
Tanaka
,
T.
Nishie
,
K.
Nagaya
,
A.
Niozu
,
R.
Yamamura
,
T.
Suenaga
,
O.
Takahashi
,
H.
Fujise
,
T.
Togashi
,
M.
Yabashi
, and
M.
Oura
, “
Photoemission from the gas phase using soft x-ray fs pulses: An investigation of the space-charge effects
,”
New J. Phys.
22
,
123029
(
2020
).
36.
S.
Hellmann
,
T.
Ott
,
L.
Kipp
, and
K.
Rossnagel
, “
Vacuum space-charge effects in nano-ARPES
,”
Phys. Rev. B
85
,
075109
(
2012
).
37.
L.-P.
Oloff
,
K.
Hanff
,
A.
Stange
,
G.
Rohde
,
F.
Diekmann
,
M.
Bauer
, and
K.
Rossnagel
, “
Pump laser-induced space-charge effects in HHG-driven time- and angle-resolved photoelectron spectroscopy
,”
J. Appl. Phys.
119
,
225106
(
2016
).
38.
S.
Ulstrup
,
J. C.
Johannsen
,
F.
Cilento
,
A.
Crepaldi
,
J. A.
Miwa
,
M.
Zacchigna
,
C.
Cacho
,
R. T.
Chapman
,
E.
Springate
,
F.
Fromm
,
C.
Raidel
,
T.
Seyller
,
P. D. C.
King
,
F.
Parmigiani
,
M.
Grioni
, and
P.
Hofmann
, “
Ramifications of optical pumping on the interpretation of time-resolved photoemission experiments on graphene
,”
J. Electron Spectrosc. Relat. Phenom.
200
,
340
346
(
2015
).
39.
R.
Al-Obaidi
,
M.
Wilke
,
M.
Borgwardt
,
J.
Metje
,
A.
Moguilevski
,
N.
Engel
,
D.
Tolksdorf
,
A.
Raheem
,
T.
Kampen
,
S.
Mähl
,
I. Y.
Kiyan
, and
E. F.
Aziz
, “
Ultrafast photoelectron spectroscopy of solutions: Space-charge effect
,”
New J. Phys.
17
,
093016
(
2015
).
40.
C.
Corder
,
P.
Zhao
,
J.
Bakalis
,
X.
Li
,
M. D.
Kershis
,
A. R.
Muraca
,
M. G.
White
, and
T. K.
Allison
, “
Ultrafast extreme ultraviolet photoemission without space charge
,”
Struct. Dyn.
5
,
054301
(
2018
).
41.
M.
Cinchetti
,
A.
Oelsner
,
G. H.
Fecher
,
H. J.
Elmers
, and
G.
Schönhense
, “
Observation of Cu surface inhomogeneities by multiphoton photoemission spectromicroscopy
,”
Appl. Phys. Lett.
83
,
1503
(
2003
).
42.
G.
Schönhense
,
K.
Medjanik
,
C.
Tusche
,
M.
de Loos
,
B.
van der Geer
,
M.
Scholz
,
F.
Hieke
,
N.
Gerken
,
J.
Kirschner
, and
W.
Wurth
, “
Correction of the deterministic part of space-charge interaction in momentum microscopy of charged particles
,”
Ultramicroscopy
159
,
488
(
2015
).
43.
E.
Bauer
, “
Photoelectron spectromicroscopy: Present and future
,”
J. Electron Spectrosc. Relat. Phenom.
114-116
,
975
987
(
2001
).
44.
L. H.
Veneklasen
, “
The continuing development of low-energy electron microscopy for characterizing surfaces
,”
Rev. Sci. Instrum.
63
,
5513
5532
(
1992
).
45.
C.
Tusche
,
A.
Krasyuk
, and
J.
Kirschner
, “
Spin resolved bandstructure imaging with a high resolution momentum microscope
,”
Ultramicr
159
,
520
(
2015
).
46.
G.
Schönhense
,
S.
Babenkov
,
D.
Vasilyev
,
H.-J.
Elmers
, and
K.
Medjanik
, “
Single-hemisphere photoelectron momentum microscope with time-of-flight recording
,”
Rev. Sci. Instrum.
91
,
123110
(
2020
).
47.
G.
Schönhense
,
K.
Medjanik
, and
H.-J.
Elmers
, “
Space-, time- and spin-resolved photoemission
,”
J. Electron Spectrosc. Relat. Phenom.
200
,
94
(
2015
).
48.
B.
Schönhense
,
K.
Medjanik
,
O.
Fedchenko
,
S.
Chernov
,
M.
Ellguth
,
D.
Vasilyev
,
A.
Oelsner
,
J.
Viefhaus
,
D.
Kutnyakhov
,
W.
Wurth
,
H. J.
Elmers
, and
G.
Schönhense
, “
Multidimensional photoemission spectroscopy—The space-charge limit
,”
New J. Phys.
20
,
033004
(
2018
).
49.
K.
Rossnagel
, “
Pushing the space-charge limit in electron momentum microscopy
,”
New J. Phys.
20
,
021001
(
2018
).
50.
P. W.
Hawkes
and
E.
Kasper
,
Principles of Electron Optics
(
Academic Press
,
1996
).
51.
H.
Seiler
, “
Secondary electron emission in the scanning electron microscope
,”
J. Appl. Phys.
54
,
R1
R18
(
1983
).
52.
O.
Schmidt
,
G. H.
Fecher
,
Y.
Hwu
, and
G.
Schönhense
, “
The spatial distribution of non-linear effects in sub-threshold photoemission from metallic adsorbates on Si(111)
,”
Surf. Sci.
482-485
,
687
(
2001
).
53.
O.
Schmidt
,
M.
Bauer
,
C.
Wiemann
,
R.
Porath
,
M.
Scharte
,
O.
Andreyev
,
G.
Schönhense
, and
M.
Aeschlimann
, “
Time-resolved two photon photoemission electron microscopy
,”
Appl. Phys. B
74
,
223
(
2002
).
54.
M.
Cinchetti
,
D. A.
Valdaitsev
,
A.
Gloskovskii
,
A.
Oelsner
,
S. A.
Nepijko
, and
G.
Schönhense
, “
Photoemission time-of-flight spectromicroscopy of Ag nanoparticle films on Si(111)
,”
J. Electron. Spectr. Rel. Phenom.
137-140
,
249
(
2004
).
55.
M.
Cinchetti
and
G.
Schönhense
, “
Two-photon photoemission spectromicroscopy of noble metal clusters on surfaces studied using time-of-flight photoemission electron microscopy
,”
J. Phys.: Condens. Matter
17
,
S1319
(
2005
).
56.
A.
Gloskovskii
,
D. A.
Valdaitsev
,
M.
Cinchetti
,
S. A.
Nepijko
,
J.
Lange
,
M.
Aeschlimann
,
M.
Bauer
,
M.
Klimenkov
,
L. V.
Viduta
,
P. M.
Tomchuk
, and
G.
Schönhense
, “
Electron emission from films of Ag and Au nanoparticles excited by a femtosecond pump-probe laser
,”
Phys. Rev. B
77
,
195427
(
2008
).
57.
M.
Cinchetti
,
A.
Gloskovskii
,
S. A.
Nepjiko
,
G.
Schönhense
,
H.
Rochholz
, and
M.
Kreiter
, “
Photoemission electron microscopy as a tool for the investigation of optical near fields
,”
Phys. Rev. Lett.
95
,
047601
(
2005
).
58.
F.
Schertz
,
M.
Schmelzeisen
,
M.
Kreiter
,
H.-J.
Elmers
, and
G.
Schönhense
, “
Field emission of electrons generated by the near field of strongly coupled plasmons
,”
Phys. Rev. Lett.
108
,
237602
(
2012
).
59.
F.
Schertz
,
M.
Schmelzeisen
,
R.
Mohammadi
,
M.
Kreiter
,
H.-J.
Elmers
, and
G.
Schönhense
, “
Near field of strongly coupled plasmons: Uncovering dark modes
,”
Nano Lett.
12
,
1885
(
2012
).
60.
M.
Lehr
,
B.
Foerster
,
M.
Schmitt
,
K.
Krüger
,
C.
Sönnichsen
,
G.
Schönhense
, and
H.-J.
Elmers
, “
Momentum distribution of electrons emitted from resonantly excited individual gold nanorods
,”
Nano Lett.
17
,
6606
(
2017
).
61.
R. P.
Xian
,
Y.
Acremann
,
S. Y.
Agustsson
,
M.
Dendzik
,
K.
Bühlmann
,
D.
Curcio
,
D.
Kutnyakhov
,
F.
Pressacco
,
M.
Heber
,
S.
Dong
,
T.
Pincelli
,
J.
Demsar
,
W.
Wurth
,
P.
Hofmann
,
M.
Wolf
,
M.
Scheidgen
,
L.
Rettig
, and
R.
Ernstorfer
, “
An open-source, end-to-end workfow for multidimensional photoemission spectroscopy
,”
Sci. Data
7
,
442
(
2020
).
62.
J.
Graf
,
S.
Hellmann
,
C.
Jozwiak
,
C. L.
Smallwood
,
Z.
Hussain
,
R. A.
Kaindl
,
L.
Kipp
,
K.
Rossnagel
, and
A.
Lanzara
, “
Vacuum space charge effect in laser-based solid-state photoemission spectroscopy
,”
J. Appl. Phys.
107
,
014912
(
2010
).
63.
J.
Maklar
,
S.
Dong
,
S.
Beaulieu
,
T.
Pincelli
,
M.
Dendzik
,
Y. W.
Windsor
,
R. P.
Xian
,
M.
Wolf
,
R.
Ernstorfer
, and
L.
Rettig
, “
A quantitative comparison of time-of-flight momentum microscopes and hemispherical analyzers for time- and angle-resolved photoemission spectroscopy experiments
,”
Rev. Sci. Instrum.
91
,
123112
(
2020
).
64.
A. K.
Mills
,
S.
Zhdanovich
,
M. X.
Na
,
F.
Boschini
,
E.
Razzoli
,
M.
Michiardi
,
A.
Sheyerman
,
M.
Schneider
,
T. J.
Hammond
,
V.
Süss
,
C.
Felser
,
A.
Damascelli
, and
D. J.
Jones
, “
Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy
,”
Rev. Sci. Instrum.
90
,
083001
(
2019
).
65.
A.
Zhao
,
M.
van Beuzekom
,
B.
Bouwens
,
D.
Byelov
,
I.
Chakaberia
,
C.
Cheng
,
E.
Maddox
,
A.
Nomerotski
,
P.
Svihra
,
J.
Visser
,
V.
Vrba
, and
T.
Weinacht
, “
Coincidence velocity map imaging using Tpx3Cam, a time stamping optical camera with 1.5 ns timing resolution
,”
Rev. Sci. Instrum.
88
,
113104
(
2017
).
66.
G.
Giacomini
,
W.
Chen
,
F.
Lanni
, and
A.
Tricoli
, “
Development of a technology for the fabrication of low-gain avalanche diodes at BNL
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
934
,
52
(
2019
).
68.
H.
Matsuda
,
L.
Tóth
,
F.
Matsui
, and
H.
Daimon
, “
Evaluation of disturbing effect of mesh holes in wide-acceptance-angle electrostatic mesh lenses
,”
J. Electron Spectrosc. Relat. Phenom.
195
,
78
84
(
2014
).
69.
G.
Schönhense
,
O.
Fedchenko
,
K.
Medjanik
,
S.
Babenkov
,
D.
Vasilyev
, and
H. J.
Elmers
, “
Asymmetric dodecapole: an imaging bandpass filter for photoelectron momentum microscopes
” (unpublished).
70.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
1998
), ISBN: 9780471309321
71.
N. D.
Lang
and
W.
Kohn
, “
Theory of metal surfaces: Work function
,”
Phys. Rev. B
3
,
1215
1223
(
1970
).
72.
D.
Cahen
and
A.
Kahn
, “
Electron energetics at surfaces and interfaces: Concepts and experiments
,”
Adv. Mater.
15
,
271
(
2003
).
73.
G. W.
Parker
, “
Electric field outside a parallel plate capacitor
,”
Am. J. Phys.
70
,
502
(
2002
).
74.
K.
Medjanik
,
S. V.
Babenkov
,
S.
Chernov
,
D.
Vasilyev
,
B.
Schönhense
,
C.
Schlueter
,
A.
Gloskovskii
,
Y.
Matveyev
,
W.
Drube
,
H. J.
Elmers
, and
G.
Schönhense
, “
Progress in HAXPES performance combining full-field k-imaging with time-of-flight recording
,”
J. Synchrotron Radiat.
26
,
1996
2012
(
2019
).
75.
K.
Medjanik
,
O.
Fedchenko
,
S.
Chernov
,
D.
Kutnyakhov
,
M.
Ellguth
,
A.
Oelsner
,
B.
Schönhense
,
T. R. F.
Peixoto
,
P.
Lutz
,
C.-H.
Min
,
F.
Reinert
,
S.
Däster
,
Y.
Acremann
,
J.
Viefhaus
,
W.
Wurth
,
H. J.
Elmers
, and
G.
Schönhense
, “
Direct 3D mapping of the Fermi surface and Fermi velocity
,”
Nat. Mater.
16
,
615
(
2017
).
76.
G.
Schönhense
and
B.
Schönhense
, “
Device for the reduction of space-charge interaction in electron-spectroscopic instruments
,” German patent DE10 2017 126 882 B3 (
January 2019
).
77.
D. A.
Dahl
,
T. R.
McJunkin
, and
J. R.
Scott
, “
Comparison of ion trajectories in vacuum and viscous environments using SIMION: Insights for instrument design
,”
Int. J. Mass Spectrom.
266
,
156
165
(
2007
), http://www.sisweb.com, primary author: David J. Manura, SIS (version 8.1/8.0/SL).
78.
M.
Martins
et al., “
Monochromator beamline for FLASH
,”
Rev. Sci. Instrum.
77
,
115108
(
2006
).
79.
N.
Gerasimova
,
S.
Dziarzhytski
, and
J.
Feldhaus
, “
The monochromator beamline at FLASH: Performance, capabilities and upgrade plans
,”
J. Mod. Opt.
58
,
1480
1485
(
2011
).
80.
L.
Miaja-Avila
,
C.
Lei
,
M.
Aeschlimann
,
J. L.
Gland
,
M. M.
Murnane
,
H. C.
Kapteyn
, and
G.
Saathoff
, “
Laser-assisted photoelectric effect from surfaces
,”
Phys. Rev. Lett.
97
,
113604
(
2006
).
81.
G.
Saathoff
,
L.
Miaja-Avila
,
M.
Aeschlimann
,
M. M.
Murnane
, and
H. C.
Kapteyn
, “
Laser-assisted photo-emission from surfaces
,”
Phys. Rev. A
77
,
022903
(
2008
).
82.
D.
Kutnyakhov
,
S.
Chernov
,
K.
Medjanik
,
R.
Wallauer
,
C.
Tusche
,
M.
Ellguth
,
S. A.
Nepijko
,
M.
Krivenkov
,
J.
Braun
,
S.
Borek
,
J.
Minar
,
H.
Ebert
,
H. J.
Elmers
, and
G.
Schönhense
, “
Spin texture of time-reversal symmetry invariant surface states on W(110)
,”
Sci. Rep.
6
,
29394
(
2016
).
83.
M.
Reutzel
,
A.
Li
, and
H.
Petek
, “
Coherent two-dimensional multiphoton photoelectron spectroscopy of metal surfaces
,”
Phys. Rev. X
9
,
011044
(
2019
).
84.
A.
Li
,
N. A.
James
,
T.
Wang
,
Z.
Wang
,
H.
Petek
, and
M.
Reutzel
, “
Toward full surface Brillouin zone mapping by coherent multi-photon photoemission
,”
New J. Phys.
22
,
073035
(
2020
).
85.
Hard X-Ray Photoelectron Spectroscopy (HAXPES)
, Springer Series in Surface Sciences Vol. 59, edited by
J. C.
Woicik
(
Springer
,
2016
), pp.
141
157
86.
C.
Kalha
et al., “
Hard X-ray photoelectron spectroscopy: A snapshot of the state-of-the-art in 2020
,”
J. Phys.: Condens. Matter
(
2021
).
87.
S.
Babenkov
,
K.
Medjanik
,
D.
Vasilyev
,
S.
Chernov
,
C.
Schlueter
,
A.
Gloskovskii
,
Yu.
Matveyev
,
W.
Drube
,
B.
Schönhense
,
K.
Rossnagel
,
H.-J.
Elmers
, and
G.
Schönhense
, “
High-accuracy bulk electronic bandmapping with eliminated diffraction effects using hard X-ray photoelectron momentum microscopy
,”
Commun. Phys.
2
,
107
(
2019
).
88.
H. J.
Elmers
,
S. V.
Chernov
,
S. W.
D’Souza
,
S. P.
Bommanaboyena
,
S. Yu.
Bodnar
,
K.
Medjanik
,
S.
Babenkov
,
O.
Fedchenko
,
D.
Vasilyev
,
S. Y.
Agustsson
,
C.
Schlueter
,
A.
Gloskovskii
,
Yu.
Matveyev
,
V. N.
Strocov
,
Y.
Skourski
,
L.
Šmejkal
,
J.
Sinova
,
J.
Minár
,
M.
Kläui
,
G.
Schönhense
, and
M.
Jourdan
, “
Néel vector induced manipulation of valence states in the collinear antiferromagnet Mn2Au
,”
ACS Nano
14
,
17554
17564
(
2020
).
89.
G.
Schönhense
,
K.
Medjanik
,
S.
Babenkov
,
D.
Vasilyev
,
M.
Ellguth
,
O.
Fedchenko
,
S.
Chernov
,
B.
Schönhense
, and
H.-J.
Elmers
, “
Momentum-transfer model of valence-band photoelectron diffraction
,”
Commun. Phys.
3
,
45
(
2020
).
90.
H.-J.
Elmers
,
J.
Regel
,
T.
Mashof
,
J.
Braun
,
S.
Babenkov
,
S.
Chernov
,
O.
Fedchenko
,
K.
Medjanik
,
D.
Vasilyev
,
J.
Minar
,
H.
Ebert
, and
G.
Schönhense
, “
Rashba splitting of the Tamm surface state on Re(0001) observed by spin-resolved photo-emission and scanning tunnelling spectroscopy
,”
Phys. Rev. Res.
2
,
013296
(
2020
).
91.
C.
Schlueter
,
A.
Gloskovskii
,
K.
Ederer
,
I.
Schostak
,
S.
Piec
,
I.
Sarkar
,
Yu.
Matveyev
,
P.
Lömker
,
M.
Sing
,
R.
Claessen
,
C.
Wiemann
,
C. M.
Schneider
,
K.
Medjanik
,
G.
Schönhense
,
P.
Amann
,
A.
Nilsson
, and
W.
Drube
, “
The new dedicated HAXPES beamline P22 at PETRAIII
,”
AIP Conf. Proc.
2054
,
040010
(
2019
).
92.
T.
Konstantinova
 et al., “
Nonequilibrium electron and lattice dynamics of strongly correlated Bi2Sr2CaCu2O8+δ single crystals
,”
Sci. Adv.
4
,
7427
(
2018
).
93.
P.
Beaud
,
A.
Caviezel
,
S. O.
Mariager
,
L.
Rettig
,
G.
Ingold
,
C.
Dornes
,
S.-W.
Huang
,
J. A.
Johnson
,
M.
Radovic
,
T.
Huber
,
T.
Kubacka
,
A.
Ferrer
,
H. T.
Lemke
,
M.
Chollet
,
D.
Zhu
,
J. M.
Glownia
,
M.
Sikorski
,
A.
Robert
,
H.
Wadati
,
M.
Nakamura
,
M.
Kawasaki
,
Y.
Tokura
,
S. L.
Johnson
, and
U.
Staub
, “
A time-dependent order parameter for ultrafast photoinduced phase transitions
,”
Nat. Mater.
13
,
923
(
2014
).
You do not currently have access to this content.