A coil system to generate a uniform field is urgently needed in quantum experiments. However, general coil configurations based on the analytical method have not considered practical restrictions, such as the region for coil placement due to holes in the center of the magnetic shield, which could not be directly applied in most of the quantum experiments. In this paper, we develop a coil design method for quantum experiments using hybrid machine learning. The algorithm part consists of a machine learner based on an artificial neural network and a differential evolution (DE) learner. The cooperation of both learners demonstrates its higher efficiency than a single DE learner and robustness in the coil optimization problem compared with analytical proposals. With the help of a DE learner, in numerical simulation, a machine learner can successfully design coaxial coil systems that generate fields whose relative inhomogeneity in a 25 mm-long central region is ∼10−6 under constraints. In addition, for experiments, a coil system with 0.069% inhomogeneity of the field, designed by a machine learner, is constructed, which is mainly limited by machining the precision of the circuit board. Benefitting from machine learning’s high-dimension optimization capabilities, our coil design method is convenient and has potential for various quantum experiments.

1.
I. K.
Kominis
,
T. W.
Kornack
,
J. C.
Allred
, and
M. V.
Romalis
,
Nature
422
,
596
599
(
2003
).
2.
D.
Budker
and
M.
Romalis
,
Nat. Phys.
3
,
227
234
(
2007
).
3.
J. R.
Maze
,
P. L.
Stanwix
,
J. S.
Hodges
,
S.
Hong
,
J. M.
Taylor
,
P.
Cappellaro
,
L.
Jiang
,
M. V. G.
Dutt
,
E.
Togan
,
A. S.
Zibrov
 et al,
Nature
455
,
644
647
(
2008
).
4.
D.
Budker
and
D. F. J.
Kimball
,
Optical Magnetometry
(
Cambridge University Press
,
Cambridge
,
2013
).
5.
G.
Chatzidrosos
,
A.
Wickenbrock
,
L.
Bougas
,
N.
Leefer
,
T.
Wu
,
K.
Jensen
,
Y.
Dumeige
, and
D.
Budker
,
Phys. Rev. Appl.
8
,
044019
(
2017
).
6.
G.
Bao
,
A.
Wickenbrock
,
S.
Rochester
,
W.
Zhang
, and
D.
Budker
,
Phys. Rev. Lett.
120
,
033202
(
2018
).
7.
H.
Zheng
,
J.
Xu
,
G. Z.
Iwata
,
T.
Lenz
,
J.
Michl
,
B.
Yavkin
,
K.
Nakamura
,
H.
Sumiya
,
T.
Ohshima
,
J.
Isoya
 et al,
Phys. Rev. Appl.
11
,
064068
(
2019
).
8.
B.
Chen
,
X.
Hou
,
F.
Ge
,
X.
Zhang
,
Y.
Ji
,
H.
Li
,
P.
Qian
,
Y.
Wang
,
N.
Xu
, and
J.
Du
,
Nano Lett.
20
,
8267
8272
(
2020
).
9.
M.
Jiang
,
W.
Xu
,
Q.
Li
,
Z.
Wu
,
D.
Suter
, and
X.
Peng
,
Adv. Quantum Technol.
3
,
2000078
(
2020
).
10.
Y. Y.
Jiang
,
A. D.
Ludlow
,
N. D.
Lemke
,
R. W.
Fox
,
J. A.
Sherman
,
L.-S.
Ma
, and
C. W.
Oates
,
Nat. Photonics
5
,
158
161
(
2011
).
11.
D.
Meyer
and
M.
Larsen
,
Gyroscopy Navig.
5
,
75
82
(
2014
).
12.
M.
Jiang
,
T.
Wu
,
J. W.
Blanchard
,
G.
Feng
,
X.
Peng
, and
D.
Budker
,
Sci. Adv.
4
,
eaar6327
(
2018
).
13.
C.
Liu
,
Z.
Dutton
,
C. H.
Behroozi
, and
L. V.
Hau
,
Nature
409
,
490
493
(
2001
).
14.
Y.-F.
Hsiao
,
P.-J.
Tsai
,
H.-S.
Chen
,
S.-X.
Lin
,
C.-C.
Hung
,
C.-H.
Lee
,
Y.-H.
Chen
,
Y.-F.
Chen
,
I. A.
Yu
, and
Y.-C.
Chen
,
Phys. Rev. Lett.
120
,
183602
(
2018
).
15.
J.
Guo
,
X.
Feng
,
P.
Yang
,
Z.
Yu
,
L.
Chen
,
C.-H.
Yuan
, and
W.
Zhang
,
Nat. Commun.
10
,
148
(
2019
).
16.
K. F.
Reim
,
P.
Michelberger
,
K. C.
Lee
,
J.
Nunn
,
N. K.
Langford
, and
I. A.
Walmsley
,
Phys. Rev. Lett.
107
,
053603
(
2011
).
17.
K. F.
Reim
,
J.
Nunn
,
V. O.
Lorenz
,
B. J.
Sussman
,
K. C.
Lee
,
N. K.
Langford
,
D.
Jaksch
, and
I. A.
Walmsley
,
Nat. Photonics
4
,
218
221
(
2010
).
18.
D.-S.
Ding
,
Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles
(
Springer
,
Singapore
,
2018
), pp.
91
107
.
19.
C. L.
Degen
,
F.
Reinhard
, and
P.
Cappellaro
,
Rev. Mod. Phys.
89
,
035002
(
2017
).
20.
R.
Beiranvand
,
Rev. Sci. Instrum.
84
,
075109
(
2013
).
21.
R.
Beiranvand
,
Rev. Sci. Instrum.
85
,
055115
(
2014
).
22.
J.
Wang
,
S.
She
, and
S.
Zhang
,
Rev. Sci. Instrum.
73
,
2175
2179
(
2002
).
23.
Y.
Zhang
,
Y.
Li
,
Q.
Jiang
,
Z.
Wang
,
T.
Xia
, and
H.
Luo
,
Rev. Sci. Instrum.
90
,
114706
(
2019
).
24.
P.
Baranov
,
V.
Baranova
,
S.
Uchaikin
, and
Y.
Pisarenko
,
2016 Dynamics of Systems, Mechanisms and Machines (Dynamics)
(
IEEE
,
2016
), pp.
1
5
.
25.
T.
Liu
,
A.
Schnabel
,
Z.
Sun
,
J.
Voigt
, and
L.
Li
,
J. Magn. Magn. Mater.
507
,
166846
(
2020
).
26.
I.
Sasada
and
Y.
Nakashima
,
J. Appl. Phys.
99
,
08D904
(
2006
).
27.
J. J.
Abbott
,
Rev. Sci. Instrum.
86
,
054701
(
2015
).
28.
C.-Y.
Liu
,
T.
Andalib
,
D. C. M.
Ostapchuk
, and
C. P.
Bidinosti
,
Nucl. Instrum. Methods Phys. Res., Sect. A
949
,
162837
(
2020
).
29.
R.
Merritt
,
C.
Purcell
, and
G.
Stroink
,
Rev. Sci. Instrum.
54
,
879
882
(
1983
).
30.
B. J.
Fisher
,
N.
Dillon
,
T. A.
Carpenter
, and
L. D.
Hall
,
Magn. Reson. Imaging
15
,
369
376
(
1997
).
31.
Y.
Zhang
,
L.
Wang
,
Y.
Guo
, and
Y.
Zhang
,
IET Power Electron.
12
,
2706
2712
(
2019
).
32.
S.
Crozier
,
L. K.
Forbes
, and
D. M.
Doddrell
,
J. Magn. Reson., Ser. A
107
,
126
128
(
1994
).
33.
K.
Sekihara
,
H.
Haneishi
, and
N.
Ohyama
,
IEEE Trans. Med. Imaging
11
,
293
299
(
1992
).
34.
F.
Shi
and
R.
Ludwig
,
IEEE Trans. Magn.
34
,
671
683
(
1998
).
35.
H.
Lu
,
A.
Jesmanowicz
,
S.-J.
Li
, and
J. S.
Hyde
,
Magn. Reson. Med.
51
,
158
164
(
2004
).
36.
K.
Hornik
,
M.
Stinchcombe
,
H.
White
 et al,
Neural Networks
2
,
359
366
(
1989
).
37.
Y.
Jin
,
Swarm Evol. Comput.
1
,
61
70
(
2011
).
38.
A. D.
Tranter
,
H. J.
Slatyer
,
M. R.
Hush
,
A. C.
Leung
,
J. L.
Everett
,
K. V.
Paul
,
P.
Vernaz-Gris
,
P. K.
Lam
,
B. C.
Buchler
, and
G. T.
Campbell
,
Nat. Commun.
9
,
4360
(
2018
).
39.
P. B.
Wigley
,
P. J.
Everitt
,
A.
van den Hengel
,
J. W.
Bastian
,
M. A.
Sooriyabandara
,
G. D.
McDonald
,
K. S.
Hardman
,
C. D.
Quinlivan
,
P.
Manju
,
C. C.
Kuhn
 et al,
Sci. Rep.
6
,
25890
(
2016
).
40.
L.
O’Driscoll
,
R.
Nichols
, and
P. A.
Knott
,
Quantum Mach. Intell.
1
,
5
15
(
2019
).
41.
A. J.
Barker
,
H.
Style
,
K.
Luksch
,
S.
Sunami
,
D.
Garrick
,
F.
Hill
,
C. J.
Foot
, and
E.
Bentine
,
Mach. Learn.: Sci. Technol.
1
,
015007
(
2020
).
42.
B. M.
Henson
,
D. K.
Shin
,
K. F.
Thomas
,
J. A.
Ross
,
M. R.
Hush
,
S. S.
Hodgman
, and
A. G.
Truscott
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
13216
13221
(
2018
).
43.
A.
Hacioglu
,
AIAA J.
45
,
2196
2203
(
2007
).
44.
J. E.
Rayas-Sánchez
,
IEEE Trans. Microwave Theory Tech.
52
,
420
435
(
2004
).
45.
R. H.
Byrd
,
P.
Lu
,
J.
Nocedal
, and
C.
Zhu
,
SIAM J. Sci. Comput.
16
,
1190
1208
(
1995
).
46.
N.
Srivastava
,
G.
Hinton
,
A.
Krizhevsky
,
I.
Sutskever
, and
R.
Salakhutdinov
,
J. Mach. Learn. Res.
15
,
1929
1958
(
2014
).
47.
D.
Hendrycks
and
K.
Gimpel
, arXiv:1606.08415 (
2016
).
48.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
 et al,
Nature
585
,
357
362
(
2020
).
49.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
 et al, arXiv:1603.04467 (
2016
).
50.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
 et al,
Nat. Methods
17
,
261
272
(
2020
).
You do not currently have access to this content.