Frequency-modulation atomic force microscopy (AFM) with a qPlus sensor allows one to atomically resolve surfaces in a variety of environments ranging from low-temperature in ultra-high vacuum to ambient and liquid conditions. Typically, the tip is driven to oscillate vertically, giving a measure of the vertical force component. However, for many systems, the lateral force component provides valuable information about the sample. Measuring lateral and vertical force components simultaneously by oscillating vertically and laterally has so far only been demonstrated with relatively soft silicon cantilevers and optical detection. Here, we show that the qPlus sensor can be used in a biaxial mode with electrical detection by making use of the first flexural mode and the length extensional mode. We describe the necessary electrode configuration as well as the electrical detection circuit and compare the length extensional mode to the needle sensor. Finally, we show atomic resolution in ambient conditions of a mica surface and in ultra-high vacuum of a silicon surface. In addition to this, we show how any qPlus AFM setup can be modified to work as a biaxial sensor, allowing two independent force components to be recorded.

1.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
, “
Atomic force microscope
,”
Phys. Rev. Lett.
56
,
930
933
(
1986
).
2.
Y.
Martin
,
C. C.
Williams
, and
H. K.
Wickramasinghe
, “
Atomic force microscope-force mapping and profiling on a sub 100-Å scale
,”
J. Appl. Phys.
61
,
4723
4729
(
1987
).
3.
T. R.
Albrecht
,
P.
Grütter
,
D.
Horne
, and
D.
Rugar
, “
Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity
,”
J. Appl. Phys.
69
,
668
(
1991
).
4.
O.
Custance
,
R.
Perez
, and
S.
Morita
, “
Atomic force microscopy as a tool for atom manipulation
,”
Nat. Nanotechnol.
4
,
803
810
(
2009
).
5.
G.
Meyer
and
N. M.
Amer
, “
Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope
,”
Appl. Phys. Lett.
57
,
2089
2091
(
1990
).
6.
E.
Arima
,
H.
Wen
,
Y.
Naitoh
,
Y. J.
Li
, and
Y.
Sugawara
, “
Development of low temperature atomic force microscopy with an optical beam deflection system capable of simultaneously detecting the lateral and vertical forces
,”
Rev. Sci. Instrum.
87
,
093113
(
2016
).
7.
F. J.
Giessibl
, “
High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork
,”
Appl. Phys. Lett.
73
,
3956
(
1998
).
8.
F. J.
Giessibl
, “
The qPlus sensor, a powerful core for the atomic force microscope
,”
Rev. Sci. Instrum.
90
,
011101
(
2019
).
9.
S. P.
Jarvis
,
H.
Yamada
,
K.
Kobayashi
,
A.
Toda
, and
H.
Tokumoto
, “
Normal and lateral force investigation using magnetically activated force sensors
,”
Appl. Surf. Sci.
157
,
314
319
(
2000
).
10.
O.
Pfeiffer
,
R.
Bennewitz
,
A.
Baratoff
,
E.
Meyer
, and
P.
Grütter
, “
Lateral-force measurements in dynamic force microscopy
,”
Phys. Rev. B
65
,
161403
(
2002
).
11.
F. J.
Giessibl
,
M.
Herz
, and
J.
Mannhart
, “
Friction traced to the single atom
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12006
12010
(
2002
).
12.
T.
Seeholzer
,
O.
Gretz
,
F. J.
Giessibl
, and
A. J.
Weymouth
, “
A Fourier method for estimating potential energy and lateral forces from frequency-modulation lateral force microscopy data
,”
New J. Phys.
21
,
083007
(
2019
).
13.
M.
Ternes
,
C. P.
Lutz
,
C. F.
Hirjibehedin
,
F. J.
Giessibl
, and
A. J.
Heinrich
, “
The force needed to move an atom on a surface
,”
Science
319
,
1066
1069
(
2008
).
14.
O.
Wolter
, “
Micromachined silicon sensors for scanning force microscopy
,”
J. Vac. Sci. Technol., B
9
,
1353
(
1991
).
15.
C. J.
Chen
,
Introduction to Scanning Tunneling Microscopy
(
Oxford University Press, Inc.
,
1993
).
16.
P.
Günther
,
U. C.
Fischer
, and
K.
Dransfeld
, “
Scanning near-field acoustic microscopy
,”
Appl. Phys. B: Photophys. Laser Chem.
48
,
89
92
(
1989
).
17.
K.
Bartzke
 et al., “
The needle sensor-a micromechanical detector for atomic force microscopy
,”
Int. J. Optoelectron.
8
,
669
(
1993
).
18.
K.
Pürckhauer
,
A. J.
Weymouth
,
K.
Pfeffer
,
L.
Kullmann
,
E.
Mulvihill
,
M. P.
Krahn
,
D. J.
Müller
, and
F. J.
Giessibl
, “
Imaging in biologically-relevant environments with AFM using stiff qPlus sensors
,”
Sci. Rep.
8
,
9330
(
2018
).
19.
Y.
Yamada
,
T.
Ichii
,
T.
Utsunomiya
, and
H.
Sugimura
, “
Simultaneous detection of vertical and lateral forces by bimodal AFM utilizing a quartz tuning fork sensor with a long tip
,”
Jpn. J. Appl. Phys., Part 1
58
,
095003
(
2019
).
20.
R. C.
Tung
,
T.
Wutscher
,
D.
Martinez-Martin
,
R. G.
Reifenberger
,
F.
Giessibl
, and
A.
Raman
, “
Higher-order eigenmodes of qPlus sensors for high resolution dynamic atomic force microscopy
,”
J. Appl. Phys.
107
,
104508
(
2010
).
21.
F. J.
Giessibl
,
F.
Pielmeier
,
T.
Eguchi
,
T.
An
, and
Y.
Hasegawa
, “
Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators
,”
Phys. Rev. B
84
,
125409
(
2011
).
22.
H.-J.
Butt
and
M.
Jaschke
, “
Calculation of thermal noise in atomic force microscopy
,”
Nanotechnology
6
,
1
(
1995
).
23.
S.
Kawai
,
T.
Glatzel
,
S.
Koch
,
B.
Such
,
A.
Baratoff
, and
E.
Meyer
, “
Ultrasensitive detection of lateral atomic-scale interactions on graphite (0001) via bimodal dynamic force measurements
,”
Phys. Rev. B
81
,
085420
(
2010
).
24.
H.
Ooe
,
D.
Kirpal
,
D. S.
Wastl
,
A. J.
Weymouth
,
T.
Arai
, and
F. J.
Giessibl
, “
Amplitude dependence of image quality in atomically-resolved bimodal atomic force microscopy
,”
Appl. Phys. Lett.
109
,
141603
(
2016
).
25.
J.
Melcher
,
S.
Hu
, and
A.
Raman
, “
Equivalent point-mass models of continuous atomic force microscope probes
,”
Appl. Phys. Lett.
91
,
053101
(
2007
).
26.
K. A.
Hofmann
,
Anorganische Chemie
, 21st ed. (
Springer-Verlag
,
1973
), p.
865
.
27.
Y.
Sugimoto
and
J.
Onoda
, “
Force spectroscopy using a quartz length-extension resonator
,”
Appl. Phys. Lett.
115
,
173104
(
2019
).
28.
F. J.
Giessibl
, “
Atomic resolution on Si(111)-(7 × 7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork
,”
Appl. Phys. Lett.
76
,
1470
(
2000
).
29.
R. W.
Ward
, “
The constants of alpha quartz
,” in (
IEEE
,
2005
).
30.
F.
Huber
and
F. J.
Giessibl
, “
Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures
,”
Rev. Sci. Instrum.
88
,
073702
(
2017
).
31.
F. J.
Giessibl
and
G.
Binnig
, “
Investigation of the (001) cleavage plane of potassium bromide with an atomic force microscope at 4.2 K in ultra-high vacuum
,”
Ultramicroscopy
42-44
,
281
289
(
1992
).
32.
D. S.
Wastl
,
A. J.
Weymouth
, and
F. J.
Giessibl
, “
Optimizing atomic resolution of force microscopy in ambient conditions
,”
Phys. Rev. B
87
,
245415
(
2013
).
33.
D. J.
Kirpal
,
K.
Pürckhauer
,
A. J.
Weymouth
, and
F. J.
Giessibl
, “
Ion mobility and material transport on KBr in air as a function of the relative humidity
,”
Beilstein J. Nanotechnol.
10
,
2084
(
2019
).
34.
T.
Fukuma
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
, “
True atomic resolution in liquid by frequency-modulation atomic force microscopy
,”
Appl. Phys. Lett.
87
,
22
25
(
2005
).
35.
S.
Kawai
,
N.
Sasaki
, and
H.
Kawakatsu
, “
Direct mapping of the lateral force gradient on Si(111)-(7 × 7)
,”
Phys. Rev. B
79
,
195412
(
2009
).
36.
A. J.
Weymouth
,
E.
Riegel
,
S.
Matencio
, and
F. J.
Giessibl
, “
Evaluating the potential energy landscape over single molecules at room temperature with lateral force microscopy
,”
Appl. Phys. Lett.
112
,
181601
(
2018
).

Supplementary Material

You do not currently have access to this content.