We describe the design, commissioning, and operation of an ultra-low-vibration closed-cycle cryogenic ion trap apparatus. One hundred lines for low-frequency signals and eight microwave/radio frequency coaxial feed-lines offer the possibility of implementing a small-scale ion-trap quantum processor or simulator. With all supply cables attached, more than 1.3 W of cooling power at 5 K is still available for absorbing energy from electrical pulses introduced to control ions. The trap itself is isolated from vibrations induced by the cold head using a helium exchange gas interface. The performance of the vibration isolation system has been characterized using a Michelson interferometer, finding residual vibration amplitudes on the order of 10 nm rms. Trapping of 9Be+ ions has been demonstrated using a combination of laser ablation and photoionization.

1.
T.
Monz
,
D.
Nigg
,
E. A.
Martinez
,
M. F.
Brandl
,
P.
Schindler
,
R.
Rines
,
S. X.
Wang
,
I. L.
Chuang
, and
R.
Blatt
, “
Realization of a scalable Shor algorithm
,”
Science
351
,
1068
1070
(
2016
).
2.
S.
Debnath
,
N. M.
Linke
,
C.
Figgatt
,
K. A.
Landsman
,
K.
Wright
, and
C.
Monroe
, “
Demonstration of a small programmable quantum computer with atomic qubits
,”
Nature
536
,
63
66
(
2016
).
3.
D. J.
Wineland
, “
Nobel lecture: Superposition, entanglement, and raising Schrödinger’s cat
,”
Rev. Mod. Phys.
85
,
1103
1114
(
2013
).
4.
A. D.
Ludlow
,
M. M.
Boyd
,
J.
Ye
,
E.
Peik
, and
P.
Schmidt
, “
Optical atomic clocks
,”
Rev. Mod. Phys.
87
,
637
701
(
2015
).
5.
T.
Schaetz
,
C. R.
Monroe
, and
T.
Esslinger
, “
Focus on quantum simulation
,”
New J. Phys.
15
,
085009
(
2013
).
6.
F.
Diedrich
,
J. C.
Bergquist
,
W. M.
Itano
, and
D. J.
Wineland
, “
Laser cooling to the zero-point energy of motion
,”
Phys. Rev. Lett.
62
,
403
(
1989
).
7.
C.
Monroe
,
D. M.
Meekhof
,
B. E.
King
,
S. R.
Jefferts
,
W. M.
Itano
,
D. J.
Wineland
, and
P.
Gould
, “
Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy
,”
Phys. Rev. Lett.
75
,
4011
4014
(
1995
).
8.
J.
Chiaverini
and
J. M.
Sage
, “
Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range
,”
Phys. Rev. A
89
,
012318
(
2014
).
9.
J.
Chiaverini
,
R.
Blakestade
,
J.
Britton
,
J.
Jost
,
C.
Langer
,
D.
Leibfried
, and
D.
Wineland
, “
Surface-electrode architecture for ion-trap quantum information processing
,”
Quantum Inf. Comput.
5
,
419
439
(
2005
).
10.
S.
Seidelin
,
J.
Chiaverini
,
R.
Reichle
,
J. J.
Bollinger
,
D.
Leibfried
,
J.
Britton
,
J. H.
Wesenberg
,
R. B.
Blakestad
,
R. J.
Epstein
,
D. B.
Hume
,
W. M.
Itano
,
J. D.
Jost
,
C.
Langer
,
R.
Ozeri
,
N.
Shiga
, and
D. J.
Wineland
, “
Microfabricated surface-electrode ion trap for scalable quantum information processing
,”
Phys. Rev. Lett.
96
,
253003
(
2006
).
11.
M. E.
Poitzsch
,
J. C.
Bergquist
,
W. M.
Itano
, and
D. J.
Wineland
, “
Cryogenic linear ion trap for accurate spectroscopy
,”
Rev. Sci. Instrum.
67
,
129
(
1996
).
12.
Q. A.
Turchette
,
D.
Kielpinski
,
B. E.
King
,
D.
Leibfried
,
D. M.
Meekhof
,
C. J.
Myatt
,
M. A.
Rowe
,
C. A.
Sackett
,
C. S.
Wood
,
W. M.
Itano
,
C.
Monroe
, and
D. J.
Wineland
, “
Heating of trapped ions from the quantum ground state
,”
Phys. Rev. A
61
,
063418
(
2000
).
13.
M.
Brownnutt
,
M.
Kumph
,
P.
Rabl
, and
R.
Blatt
, “
Ion-trap measurements of electric-field noise near surfaces
,”
Rev. Mod. Phys.
87
,
1419
1482
(
2015
).
14.
L.
Deslauriers
,
S.
Olmschenk
,
D.
Stick
,
W. K.
Hensinger
,
J.
Sterk
, and
C.
Monroe
, “
Scaling and suppression of anomalous heating in ion traps
,”
Phys. Rev. Lett.
97
,
103007
(
2006
).
15.
J.
Labaziewicz
,
Y.
Ge
,
P.
Antohi
,
D.
Leibrandt
,
K. R.
Brown
, and
I. L.
Chuang
, “
Suppression of heating rates in cryogenic surface-electrode ion traps
,”
Phys. Rev. Lett.
100
,
013001
(
2008
).
16.
C.
Ospelkaus
,
C. E.
Langer
,
J. M.
Amini
,
K. R.
Brown
,
D.
Leibfried
, and
D. J.
Wineland
, “
Trapped-ion quantum logic gates based on oscillating magnetic fields
,”
Phys. Rev. Lett.
101
,
090502
(
2008
).
17.
M.
Carsjens
,
M.
Kohnen
,
T.
Dubielzig
, and
C.
Ospelkaus
, “
Surface-electrode Paul trap with optimized near-field microwave control
,”
Appl. Phys. B
114
,
243
250
(
2014
).
18.
M.
Wahnschaffe
,
H.
Hahn
,
G.
Zarantonello
,
T.
Dubielzig
,
S.
Grondkowski
,
A.
Bautista-Salvador
,
M.
Kohnen
, and
C.
Ospelkaus
, “
Single-ion microwave near-field quantum sensor
,”
Appl. Phys. Lett.
110
,
034103
(
2017
).
19.
H.
Hahn
,
G.
Zarantonello
,
M.
Schulte
,
A.
Bautista-Salvador
,
K.
Hammerer
, and
C.
Ospelkaus
, “
Integrated 9Be+ multi-qubit gate device for the ion-trap quantum computer
,”
npj Quantum Inf.
5
,
70
(
2019
).
20.
G.
Zarantonello
,
H.
Hahn
,
J.
Morgner
,
M.
Schulte
,
A.
Bautista-Salvador
,
R.
Werner
,
K.
Hammerer
, and
C.
Ospelkaus
, “
Robust and resource-efficient microwave near-field entangling 9Be+ gate
,”
Phys. Rev. Lett.
123
,
260503
(
2019
).
21.
J. W.
Ekin
,
Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties, and Superconductor Critical-Current Testing
(
Oxford University Press
,
New York
,
2015
).
22.
C.
Wang
and
J. G.
Hartnett
, “
A vibration free cryostat using pulse tube cryocooler
,”
Cryogenics
50
,
336
341
(
2010
).
23.
P. B.
Antohi
,
D.
Schuster
,
G. M.
Akselrod
,
J.
Labaziewicz
,
Y.
Ge
,
Z.
Lin
,
W. S.
Bakr
, and
I. L.
Chuang
, “
Cryogenic ion trapping systems with surface-electrode traps
,”
Rev. Sci. Instrum.
80
,
013103
(
2009
).
24.
D. J.
Berkeland
,
J. D.
Miller
,
J. C.
Bergquist
,
W. M.
Itano
, and
D. J.
Wineland
, “
Minimization of ion micromotion in a Paul trap
,”
J. Appl. Phys.
83
,
5025
(
1998
).
25.
R.
Franz
and
G.
Wiedemann
, “
Ueber die wärme-leitungsfähigkeit der metalle
,”
Ann. Phys.
165
,
497
531
(
1853
).
26.
Cryogenic material properties OFHC Copper, NIST Cryogenic Technology Resources Index of Material Properties.
27.
W.
Macalpine
and
R.
Schildknecht
, “
Coaxial resonators with helical inner conductor
,”
Proc. IRE
47
,
2099
2105
(
1959
).
28.
J. R.
Fisk
,
Helical-Resonator Design Techniques
(
QST
,
1976
).
29.
J. D.
Siverns
,
L. R.
Simkins
,
S.
Weidt
, and
W. K.
Hensinger
, “
On the application of radio frequency voltages to ion traps via helical resonators
,”
Appl. Phys. B
107
,
921
934
(
2012
).
30.
D. M.
Pozar
,
Microwave Engineering
(
John Wiley & Sons
,
2009
).
31.
F.
Teyssandier
and
D.
Prêle
, “
Commercially available capacitors at cryogenic temperatures
,” in
Ninth International Workshop on Low Temperature Electronics—WOLTE9
,
Guaruja, Brazil
,
2010
.
32.
B. C.
Sawyer
,
J. G.
Bohnet
,
J. W.
Britton
, and
J. J.
Bollinger
, “
Reversing hydride-ion formation in quantum-information experiments with Be+
,”
Phys. Rev. A
91
,
011401
(
2015
).
33.
B.
Roth
,
P.
Blythe
,
H.
Wenz
,
H.
Daerr
, and
S.
Schiller
, “
Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single-particle resolution
,”
Phys. Rev. A
73
,
042712
(
2006
).
34.
S.
Sellner
,
M.
Besirli
,
M.
Bohman
,
M. J.
Borchert
,
J.
Harrington
,
T.
Higuchi
,
A.
Mooser
,
H.
Nagahama
,
G.
Schneider
,
C.
Smorra
,
T.
Tanaka
,
K.
Blaum
,
Y.
Matsuda
,
C.
Ospelkaus
,
W.
Quint
,
J.
Walz
,
Y.
Yamazaki
, and
S.
Ulmer
, “
Improved limit on the directly measured antiproton lifetime
,”
New J. Phys.
19
,
083023
(
2017
).
35.
G.
Pagano
,
P. W.
Hess
,
H. B.
Kaplan
,
W. L.
Tan
,
P.
Richerme
,
P.
Becker
,
A.
Kyprianidis
,
J.
Zhang
,
E.
Birckelbaw
,
M. R.
Hernandez
,
Y.
Wu
, and
C.
Monroe
, “
Cryogenic trapped-ion system for large scale quantum simulation
,”
Quantum Sci. Technol.
4
,
014004
(
2019
).
36.
P.
Micke
,
J.
Stark
,
S. A.
King
,
T.
Leopold
,
T.
Pfeifer
,
L.
Schmöger
,
M.
Schwarz
,
L. J.
Spieß
,
P. O.
Schmidt
, and
J. R.
Crespo López-Urrutia
, “
Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications
,”
Rev. Sci. Instrum.
90
,
065104
(
2019
).
37.
M. F.
Brandl
,
M. W.
van Mourik
,
L.
Postler
,
A.
Nolf
,
K.
Lakhmanskiy
,
R. R.
Paiva
,
S.
Möller
,
N.
Daniilidis
,
H.
Häffner
,
V.
Kaushal
,
T.
Ruster
,
C.
Warschburger
,
H.
Kaufmann
,
U. G.
Poschinger
,
F.
Schmidt-Kaler
,
P.
Schindler
,
T.
Monz
, and
R.
Blatt
, “
Cryogenic setup for trapped ion quantum computing
,”
Rev. Sci. Instrum.
87
,
113103
(
2016
).
38.
A. C.
Wilson
,
C.
Ospelkaus
,
A. P.
VanDevender
,
J. A.
Mlynek
,
K. R.
Brown
,
D.
Leibfried
, and
D. J.
Wineland
, “
A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions
,”
Appl. Phys. B
105
,
741
748
(
2011
).
39.
F.
Gebert
,
M. H.
Frosz
,
T.
Weiss
,
Y.
Wan
,
A.
Ermolov
,
N. Y.
Joly
,
P. O.
Schmidt
, and
P. S. J.
Russell
, “
Damage-free single-mode transmission of deep-UV light in hollow-core PCF
,”
Opt. Express
22
,
15388
15396
(
2014
).
40.
H.
Hahn
, “
Two-qubit microwave quantum logic gate with 9Be+ ions in scalable surface-electrode ion traps
,” Ph.D. thesis,
Gottfried Wilhelm Leibniz Universität
,
Hannover
,
2019
.
41.
H.-Y.
Lo
,
J.
Alonso
,
D.
Kienzler
,
B. C.
Keitch
,
L. E.
de Clercq
,
V.
Negnevitsky
, and
J. P.
Home
, “
All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions
,”
Appl. Phys. B
114
,
17
25
(
2014
).
42.
J.
Schou
,
S.
Amoruso
, and
J. G.
Lunney
,
Plume Dynamics
, Springer Series in Optical Sciences, edited by
C.
Phipps
(
Springer US
,
Boston, MA
,
2007
).
43.
A.
Bautista-Salvador
,
G.
Zarantonello
,
H.
Hahn
,
A.
Preciado-Grijalva
,
J.
Morgner
,
M.
Wahnschaffe
, and
C.
Ospelkaus
, “
Multilayer ion trap technology for scalable quantum computing and quantum simulation
,”
New J. Phys.
21
,
043011
(
2019
).
44.
R.
Bowler
,
U.
Warring
,
J. W.
Britton
,
B. C.
Sawyer
, and
J.
Amini
, “
Arbitrary waveform generator for quantum information processing with trapped ions
,”
Rev. Sci. Instrum.
84
,
033108-1
033108-6
(
2013
).
You do not currently have access to this content.