Tapered optical fibers are versatile tools with a wide spectrum of applications, ranging from sensing to atomic physics. In this work, we developed a highly accessible and controllable fiber tapering system to fabricate tapered optical fibers with a routine optical transmission of 95% and above. With an optimal design, optical transmissions higher than 99% have been experimentally demonstrated. We achieved such results by developing two unique components in a traditional heat-and-pull system: a custom-made miniature heater named as the ceramic housed electric furnace (CHEF) and a real-time, frequency-domain monitoring method. The CHEF enables a well-controlled, uniform, and stable heating zone for an adiabatic tapering process, while the frequency-domain monitoring empowers one to reliably terminate the tapering right after the single-mode trigger. We designed and fabricated the CHEF using low-cost and readily accessible materials and equipment, in order to benefit a broader audience. We carried out a parametric study to systematically characterize the CHEF performance and provided guidelines for the CHEF design, fabrication, and operation. The frequency-domain monitoring method was developed based on our understanding of the dynamic evolution of optical modes in the tapered fiber. Such a method allows real-time visualization of the number of optical models and characterization of the taper adiabaticity during the tapering process, both of which are not available with the commonly used time-domain monitoring. The developed CHEF-based fiber tapering system will meet the urgent need of high-quality tapered optical fibers as well as opening doors to new applications of tapered optical fibers.

1.
J. M.
Ward
,
D. G.
O’Shea
,
B. J.
Shortt
,
M. J.
Morrissey
,
K.
Deasy
, and
S. G.
Chormaic
,
Rev. Sci. Instrum.
77
,
083105
(
2006
).
2.
L.
Tong
,
R. R.
Gattass
,
J. B.
Ashcom
,
S.
He
,
J.
Lou
,
M.
Shen
,
I.
Maxwell
, and
E.
Mazur
,
Nature
426
,
816
(
2003
).
3.
T. A.
Birks
and
Y. W.
Li
,
J. Lightwave Technol.
10
,
432
(
1992
).
4.
G.
Brambilla
, in
2010 Photonics Global Conference
(
IEEE, Orchard, Singapore
,
2010
), p.
1
.
5.
L.
Zhang
,
P.
Wang
,
Y.
Xiao
,
H.
Yu
, and
L.
Tong
,
Lab Chip
11
,
3720
(
2011
).
6.
Y.
Li
,
Z.
Xu
,
S.
Tan
,
F.
Fang
,
L.
Yang
,
B.
Yuan
, and
Q.
Sun
,
J. Phys. D: Appl. Phys.
52
,
493002
(
2019
).
7.
H.-Y.
Lin
,
C.-H.
Huang
,
G.-L.
Cheng
,
N.-K.
Chen
, and
H.-C.
Chui
,
Opt. Express
20
,
21693
(
2012
).
8.
B.
Zhang
,
J. X.
Luo
,
Z. L.
Liu
, and
F. P.
Wu
,
Appl. Opt.
55
,
1490
(
2016
).
9.
G.
Tkachenko
,
I.
Toftul
,
C.
Esporlas
,
A.
Maimaiti
,
F.
Le Kien
,
V. G.
Truong
, and
S. N.
Chormaic
,
Optica
7
,
59
(
2020
).
10.
M
. C.
Frawley
,
I.
Gusachenko
,
V. G.
Truong
,
M.
Sergides
, and
S. N.
Chormaic
,
Opt. Express
22
,
16322
(
2014
).
11.
Y.
Ren
,
R.
Zhang
,
C.
Ti
, and
Y.
Liu
,
Optica
3
,
1205
(
2016
).
12.
E.
Vetsch
,
D.
Reitz
,
G.
Sagué
,
R.
Schmidt
,
S. T.
Dawkins
, and
A.
Rauschenbeutel
,
Phys. Rev. Lett.
104
,
203603
(
2009
).
13.
C.
Sayrin
,
C.
Clausen
,
B.
Albrecht
,
P.
Schneeweiss
, and
A.
Rauschenbeutel
,
Optica
2
,
353
(
2015
).
14.
Z.
Zhang
,
J.
Pan
,
Y.
Tang
,
Y.
Xu
,
L.
Zhang
,
Y.
Gong
, and
L.
Tong
,
Lab Chip
20
,
2572
(
2020
).
15.
Z.
Li
,
Y.
Xu
,
W.
Fang
,
L.
Tong
, and
L.
Zhang
,
Sensors
15
,
4890
(
2015
).
16.
C. P.
Michael
,
M.
Borselli
,
T. J.
Johnson
,
C.
Chrystal
, and
O.
Painter
,
Opt. Express
15
,
4745
(
2007
).
17.
R.
Zhang
,
C.
Ti
,
M. I.
Davanço
,
Y.
Ren
,
V.
Aksyuk
,
Y.
Liu
, and
K.
Srinivasan
,
Appl. Phys. Lett.
107
,
131110
(
2015
).
18.
M.
Wang
,
R.
Zhang
,
R.
Ilic
,
V.
Aksyuk
, and
Y.
Liu
,
Nano Lett.
20
,
3050
(
2020
).
19.
M.
Smit
,
K.
Williams
, and
J.
van der Tol
, in
2019 IEEE Journal of Solid-State Circuits Conference (ISSCC)
(
IEEE
,
2019
), p.
29
.
20.
M.
Glick
,
L. C.
Kimmerling
, and
R. C.
Pfahl
,
Opt. Photonics News
29
,
36
(
2018
).
21.
B. D.
Hauer
,
P. H.
Kim
,
C.
Doolin
,
A. J.
MacDonald
,
H.
Ramp
, and
J. P.
Davis
,
EPJ Tech. Instrum.
1
,
4
(
2014
).
22.
J. E.
Hoffman
,
S.
Ravets
,
J. A.
Grover
,
P.
Solano
,
P. R.
Kordell
,
J. D.
Wong-Campos
,
L. A.
Orozco
, and
S. L.
Rolston
,
AIP Adv.
4
,
067124
(
2014
).
23.
J.-C.
Beugnot
,
S.
Lebrun
,
G.
Pauliat
,
H.
Maillotte
,
V.
Laude
, and
T.
Sylvestre
,
Nat. Commun.
5
,
5242
(
2014
).
24.
A.
Godet
,
T.
Sylvestre
,
V.
Pêcheur
,
J.
Chrétien
,
J.-C.
Beugnot
, and
K. P.
Huy
,
APL Photonics
4
,
080804
(
2019
).
25.
J. M.
Ward
,
A.
Maimaiti
,
V. H.
Le
, and
S. N.
Chormaic
,
Rev. Sci. Instrum.
85
,
111501
(
2014
).
26.
S.
Ravets
,
J. E.
Hoffman
,
P. R.
Kordell
,
J. D.
Wong-Campos
,
S. L.
Rolston
, and
L. A.
Orozco
,
J. Opt. Soc. Am. A
30
,
2361
(
2012
).
27.
L.
Ding
,
C.
Belacel
,
S.
Ducci
,
G.
Leo
, and
I.
Favero
,
Appl. Opt.
49
,
2441
(
2010
).
28.
M.
Sumetsky
,
Y.
Dulashko
, and
A.
Hale
,
Opt. Express
12
,
3521
(
2004
).
29.
V.
Kavungal
,
G.
Farrell
,
Q.
Wu
,
A. K.
Mallik
, and
Y.
Semenova
,
Microwave Opt. Technol. Lett.
60
,
1495
(
2018
).
30.
Y.
Takeuchi
and
M.
Horiguchi
,
Appl. Opt.
33
,
1029
(
1994
).
31.
Y.
Takeuchi
and
J.
Noda
,
IEEE Photonics Technol. Lett.
4
,
465
(
1992
).
32.
F.
Orucevic
,
V.
Lefèvre-Seguin
, and
J.
Hare
,
Opt. Express
15
,
013624
(
2007
).
33.
J. D.
Love
,
W. M.
Henry
,
W. J.
Stewart
,
R. J.
Black
,
S.
Lacroix
, and
F.
Gonthier
,
IEEE Proc. J. Optoelectron.
138
,
343
(
1991
).
34.
S. W.
Harun
,
K. S.
Lim
,
C. K.
Tio
,
K.
Dimyati
, and
H.
Ahmad
,
Optik
124
,
538
(
2013
).
35.
See https://drive.google.com/file/d/1gXfEssmVSGu6d5ocswYPLQfuPfmpOp1d/view?usp=sharing for the custom Labview codes developed by the authors. Last accessed 1/17/2021.
36.
K.
Okamoto
,
Fundamentals of Optical Waveguides
(
Academic Press
,
2006
).
37.
S. M.
Spillane
,
T. J.
Kippenberg
,
O. J.
Painter
, and
K. J.
Vahala
,
Phys. Rev. Lett.
91
,
043902
(
2003
).
38.
A. B.
Matsko
and
V. S.
Ilchenko
,
IEEE J. Sel. Top. Quantum Electron.
12
,
3
(
2006
).
You do not currently have access to this content.