Organic thin film materials with molecular ordering are gaining attention as they exhibit semiconductor characteristics. When using them for electronics, the thermal management becomes important, where heat dissipation is directional owing to the anisotropic thermal conductivity arising from the molecular ordering. However, it is difficult to evaluate the anisotropy by simultaneously measuring in-plane and cross-plane thermal conductivities of the film on a substrate because the film is typically as thin as tens to hundreds of nanometers and its in-plane thermal conductivity is low. Here, we develop a novel bidirectional 3ω system that measures the anisotropic thermal conductivity of thin films by patterning two metal wires with different widths and preparing the films on top and extracting the in-plane and cross-plane thermal conductivities using the difference in their sensitivities to the metal-wire width. Using the developed system, the thermal conductivity of spin-coated poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with thickness of 70 nm was successfully measured. The measured in-plane thermal conductivity of PEDOT:PSS film was as high as 2.9 W m−1 K−1 presumably due to the high structural ordering, giving an anisotropy of 10. The calculations of measurement sensitivity to the film thickness and thermal conductivities suggest that the device can be applied to much thinner films by utilizing metal wires with a smaller width.
Skip Nav Destination
CHORUS
Article navigation
March 2021
Research Article|
March 15 2021
Anisotropic thermal conductivity measurement of organic thin film with bidirectional 3ω method
Shingi Yamaguchi
;
Shingi Yamaguchi
1
Department of Mechanical Engineering, The University of Tokyo
, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Search for other works by this author on:
Takuma Shiga
;
Takuma Shiga
1
Department of Mechanical Engineering, The University of Tokyo
, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Search for other works by this author on:
Shun Ishioka;
Shun Ishioka
2
Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
Search for other works by this author on:
Tsuguyuki Saito
;
Tsuguyuki Saito
2
Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
Search for other works by this author on:
Takashi Kodama
;
Takashi Kodama
1
Department of Mechanical Engineering, The University of Tokyo
, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Search for other works by this author on:
Junichiro Shiomi
Junichiro Shiomi
a)
1
Department of Mechanical Engineering, The University of Tokyo
, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
a)Author to whom correspondence should be addressed: shiomi@photon.t.u-tokyo.ac.jp
Search for other works by this author on:
a)Author to whom correspondence should be addressed: shiomi@photon.t.u-tokyo.ac.jp
Rev. Sci. Instrum. 92, 034902 (2021)
Article history
Received:
September 26 2020
Accepted:
February 24 2021
Citation
Shingi Yamaguchi, Takuma Shiga, Shun Ishioka, Tsuguyuki Saito, Takashi Kodama, Junichiro Shiomi; Anisotropic thermal conductivity measurement of organic thin film with bidirectional 3ω method. Rev. Sci. Instrum. 1 March 2021; 92 (3): 034902. https://doi.org/10.1063/5.0030982
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00