A Hall sensor array system for magnetic field detection and analysis is realized in X-FAB 0.18 μm CMOS technology. Magnetic field detection is attributed to the magnetization of metal coils to metal particles and the sensing characteristics of the Hall sensor array. The system puts forward a complete solution from Hall sensors, analog front-end circuit, analog-to-digital converter (ADC) to microcontroller unit. Using Ansoft Maxwell and COMSOL Multiphysics software for simulation verification, the minimum diameter of magnetic particles that can be detected in the system is 2 μm. The measured signal to noise and distortion ratio, spurious free dynamic range, and effective number of bits of the proposed ADC are 70.61 dB, 90.08 dB, and 11.44-bit, respectively. The microsystem based on STM32 combines hardware and software design, which can effectively adjust the motion parameters and realize the real-time display in the LCD screen of the magnetic field and voltage information. Compared to the prior system, the portability, cost, and efficiency have been considerably improved, which is aimed at the rapid measurement of heavy metal particles such as Fe, Co, and Ni in ambient air and blood.

1.
J.-H.
Yi
,
X.-F.
Wu
,
L.-Y.
Wang
,
J.
Lei
, and
J.
Han
, “
Mechanisms and effects of PM 2.5 on diseases of respiratory system: Latest findings
,”
J. Xi’an Jiaot. Univ. (Med. Sci.)
40
,
167
172
(
2019
).
2.
T.
Tzeng
,
C.
Kuo
,
S.
Wang
,
P.
Huang
,
Y.
Huang
,
W.
Hsieh
,
Y.
Huang
,
P.
Kuo
,
S.
Yu
,
S.
Lee
,
Y. J.
Tseng
,
W.
Tian
, and
S.
Lu
, “
A portable micro gas chromatography system for lung cancer associated volatile organic compound detection
,”
IEEE J. Solid-State Circuits
51
,
259
272
(
2016
).
3.
B. A.
Maher
,
I. A. M.
Ahmed
,
V.
Karloukovski
,
D. A.
MacLaren
,
P. G.
Foulds
,
D.
Allsop
,
D. M. A.
Mann
,
R.
Torres-Jardón
, and
L.
Calderon-Garciduenas
, “
Magnetite pollution nanoparticles in the human brain
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
10797
10801
(
2016
).
4.
S.
Zuo
,
J.
Chen
,
H.
Fan
,
R.
Ghannam
, and
H.
Heidari
, “
On chip counting and localisation of magnetite pollution nanoparticles
,” in
2019 15th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)
(
IEEE
,
2019
), pp.
105
108
, .
5.
P.
Kuo
,
J.
Kuo
,
H.
Hsueh
,
J.
Hsieh
,
Y.
Huang
,
T.
Wang
,
Y.
Lin
,
C.
Lin
,
Y.
Yang
, and
S.
Lu
, “
A smart CMOS assay SOC for rapid blood screening test of risk prediction
,”
IEEE Trans. Biomed. Circuits Syst.
9
,
790
800
(
2015
).
6.
F.
Guevara Luna
,
M.
Guevara-Luna
, and
N.
Rojas
, “
Spatial-temporal assessment and mapping of the air quality and noise pollution in a sub-area local environment inside the center of a Latin American Megacity: Universidad Nacional de Colombia-Bogotá Campus
,”
Asian J. Atmos. Environ.
12
,
193
204
(
2018
).
7.
S.
Pattanaik
,
F. E.
Huggins
, and
G. P.
Huffman
, “
The variability in iron speciation in size fractionated residual oil fly ash particulate matter (ROFA pm)
,”
Sci. Total Environ.
562
,
898
905
(
2016
).
8.
X.
Zhang
,
L.
Zhang
,
S.
Gong
,
L.
Tian
,
Y.
Zhang
,
L.
Yang
, and
Z.
Jia
, “
Design of pm 2.5 air quality detection system based on median value average filtering algorithm and OLED screen
,”
IOP Conf. Ser.: Earth Environ. Sci.
450
,
012013
(
2020
).
9.
C.-P.
Su
,
X.
Peng
,
X.-F.
Huang
,
L.-W.
Zeng
,
L.-M.
Cao
,
M.-X.
Tang
,
Y.
Chen
,
B.
Zhu
,
Y.-S.
Wang
, and
L.-Y.
He
, “
Development and application of a mass closure PM2.5 composition online monitoring system
,”
Atmos. Meas. Tech.
13
,
5407
5422
(
2020
).
10.
D.
Wang
,
M. H.
Sowlat
, and
J.
Schauer
, “
Development and evaluation of a novel monitor for online measurement of iron, manganese, and chromium in ambient particulate matter (pm)
,”
Sci. Total Environ.
565
,
123
131
(
2016
).
11.
A.
Kokoulin
and
R.
Kokoulin
, “
Multiscale optical PM 2.5 particles recognition and sorting system in dust probes
,” in
2020 26th Conference of Open Innovations Association (FRUCT)
(
IEEE
,
2020
), pp.
188
193
, .
12.
R.
Simanullang
,
S.
Soekirno
, and
H. A.
Larassari
, “
Design and analysis of air quality monitoring system PM10 and PM2.5 integrated with weather parameters (a case study on Margonda Raya Street Depok)
,”
J. Phys.: Conf. Ser.
1528
,
012053
(
2020
).
13.
P.
Ciccarella
,
M.
Carminati
,
M.
Sampietro
, and
G.
Ferrari
, “
Multichannel 65 zF rms resolution CMOS monolithic capacitive sensor for counting single micrometer-sized airborne particles on chip
,”
IEEE J. Solid-State Circuits
51
,
2545
2553
(
2016
).
14.
V.
Nabaei
,
R.
Chandrawati
, and
H.
Heidari
, “
Magnetic biosensors: Modelling and simulation
,”
Biosens. Bioelectron.
103
,
69
86
(
2018
).
15.
H.
Fan
,
S.
Li
,
V.
Nabaei
,
Q.
Feng
, and
H.
Heidari
, “
Modeling of three-axis Hall effect sensors based on integrated magnetic concentrator
,”
IEEE Sens. J.
20
,
9919
9927
(
2020
).
16.
S.
Abersfelder
,
A.
Meyer
,
A.
Heyder
,
M.
Herzog
,
J.
Franke
, and
M.
Brela
, “
Crack detection in PM-rotors using magnetic field measurement and data processing
,” in
2017 7th International Electric Drives Production Conference (EDPC)
(
IEEE
,
2017
), pp.
1
6
, .
17.
H.
Heidari
,
E.
Bonizzoni
,
U.
Gatti
,
F.
Maloberti
, and
R.
Dahiya
, “
CMOS vertical Hall magnetic sensors on flexible substrate
,”
IEEE Sens. J.
16
,
8736
8743
(
2016
).
18.
B.
Liu
,
Y.
Sun
,
Y.
Ding
,
P.
Cao
,
A.
Liu
,
S. Y.
Ong
,
M.
Tiong
,
G.
Cheng
,
M. N.
Islam
,
R.
Jain
,
T. L.
Tan
,
E.
Quek
, and
E.
Toh
, “
Low-power and high-sensitivity system-on-chip Hall effect sensor
,” in
2017 IEEE Sensors
(
IEEE
,
2017
), pp.
1
3
.
19.
C.
Lee
and
T.
Chien
, “
Design and fabrication of micro-Hall-effect sensors
,” in
2018 IEEE 12th International Conference on Sensing Technology (ICST)
(
IEEE
,
2018
), pp.
96
101
, .
20.
H.
Heidari
and
V.
Nabaei
,
Magnetic Sensors for Biomedical Applications
(
Wiley-IEEE Press
,
2019
).
21.
K.-C.
Cheng
,
C.-H.
Tseng
, and
L. M.
Hildemann
, “
Using indoor positioning and mobile sensing for spatial exposure and environmental characterizations: Pilot demonstration of PM2.5 mapping
,”
Environ. Sci. Technol. Lett.
6
,
153
158
(
2019
).
22.
P. P.
Liu
,
K.
Skucha
,
Y.
Duan
,
M.
Megens
,
J.
Kim
,
I. I.
Izyumin
,
S.
Gambini
, and
B.
Boser
, “
Magnetic relaxation detector for microbead labels
,”
IEEE J. Solid-State Circuits
47
,
1056
1064
(
2012
).
23.
S.
Gambini
,
K.
Skucha
,
P. P.
Liu
,
J.
Kim
, and
R.
Krigel
, “
A 10 kPixel CMOS Hall sensor array with baseline suppression and parallel readout for immunoassays
,”
IEEE J. Solid-State Circuits
48
,
302
317
(
2013
).
24.
H.
Heidari
,
E.
Bonizzoni
,
U.
Gatti
, and
F.
Maloberti
, “
A CMOS current-mode magnetic Hall sensor with integrated front-end
,”
IEEE Trans. Circuits Syst.: Regul. Pap.
62
,
1270
1278
(
2015
).
25.
D.
Issadore
,
Y. I.
Park
,
H.
Shao
,
C.
Min
,
K.
Lee
,
M.
Liong
,
R.
Weissleder
, and
H.
Lee
, “
Magnetic sensing technology for molecular analyses
,”
Lab Chip
14
,
2385
2397
(
2014
).
26.
V.
Mosser
,
N.
Matringe
, and
Y.
Haddab
, “
A spinning current circuit for Hall measurements down to the nanotesla range
,”
IEEE Trans. Instrum. Meas.
66
,
637
650
(
2017
).
27.
X.
Hu
,
Y.
Xu
, and
J.
Xu
, “
A low-offset current-mode CMOS vertical Hall sensor microsystem with four-phase spinning current technique
,” in
2018 China Semiconductor Technology International Conference (CSTIC)
(
IEEE
,
2018
), pp.
1
3
,
28.
H.
Reyvandi
,
F.
Shakibaee
, and
M.
Saberi
, “
A 6-bit 100-ms/s fully-digital time-based analog-to-digital converter
,” in
2019 27th Iranian Conference on Electrical Engineering (ICEE)
(
IEEE
,
2019
), pp.
412
415
, .
29.
Y.
Xu
,
H.-B.
Pan
,
S.-Z.
He
, and
L.
Li
, “
A highly sensitive CMOS digital Hall sensor for low magnetic field applications
,”
Sensors
12
,
2162
2174
(
2012
).
30.
T.
Watanabe
and
T.
Terasawa
, “
All-digital-ADC TAD in sensor digitization for scaling over wide temperature ranges
,” in
2015 IEEE Sensors
(
IEEE
,
2015
), pp.
1
4
, .
31.
T.
Watanabe
,
T.
Mizuno
, and
Y.
Makino
, “
An all-digital analog-to-digital converter with 12-μV/LSB using moving-average filtering
,”
IEEE J. Solid-State Circuits
38
,
120
125
(
2003
).
32.
B.
Kim
,
W.
Xu
, and
C. H.
Kim
, “
A fully-digital beat-frequency based ADC achieving 39 dB SNDR for a 1.6 mVpp input signal
,” in
Proceedings of the IEEE 2013 Custom Integrated Circuits Conference
(
IEEE
,
2013
), pp.
1
4
, .
33.
S.
Huber
,
W.
Leten
,
M.
Ackermann
,
C.
Schott
, and
O.
Paul
, “
A fully integrated analog compensation for the piezo-Hall effect in a CMOS single-chip Hall sensor microsystem
,”
IEEE Sens. J.
15
,
2924
2933
(
2015
).
34.
P.
Liu
,
K.
Skucha
,
Y.
Duan
,
M.
Megens
,
J.
Kim
,
I.
Izyumin
,
S.
Gambini
, and
B.
Boser
, “
Magnetic relaxation detector for microbead labels in biomedical assays
,” in
2011 Symposium on VLSI Circuits—Digest of Technical Papers
(
IEEE
,
2011
), pp.
176
177
.
You do not currently have access to this content.