Three-dimensional reconstruction algorithms have been developed, which determine the hot-spot velocity, hot-spot apparent ion temperature distribution, and fuel areal-density distribution present in laser-direct-drive inertial confinement fusion implosions on the OMEGA laser. These reconstructions rely on multiple independent measurements of the neutron energy spectrum emitted from the fusing plasma. Measurements of the neutron energy spectrum on OMEGA are made using a suite of quasi-orthogonal neutron time-of-flight detectors and a magnetic recoil spectrometer. These spectrometers are positioned strategically around the OMEGA target chamber to provide unique 3D measurements of the conditions of the fusing hot spot and compressed fuel near peak compression. The uncertainties involved in these 3D reconstructions are discussed and are used to identify a new nTOF diagnostic line of sight, which when built will reduce the uncertainty in the hot-spot apparent ion temperature distribution from 700 to <400 eV.

2.
J.
Nuckolls
,
L.
Wood
,
A.
Thiessen
, and
G.
Zimmerman
,
Nature
239
,
139
(
1972
).
3.
T. R.
Boehly
 et al.,
Opt. Commun.
133
,
495
(
1997
).
4.
B. K.
Spears
 et al.,
Phys. Plasmas
21
,
042702
(
2014
).
5.
K. M.
Woo
 et al.,
Phys. Plasmas
25
,
052704
(
2018
).
6.
J. A.
Frenje
 et al.,
Phys. Plasmas
17
,
056311
(
2010
).
7.
C. J.
Forrest
 et al.,
Rev. Sci. Instrum.
83
,
10D919
(
2012
).
8.
D. T.
Casey
 et al.,
Rev. Sci. Instrum.
84
,
043506
(
2013
).
9.
V. Yu.
Glebov
,
C. J.
Forrest
,
K. L.
Marshall
,
M.
Romanofsky
,
T. C.
Sangster
,
M. J.
Shoup
, and
C.
Stoeckl
,
Rev. Sci. Instrum.
85
,
11E102
(
2014
).
10.
O. M.
Mannion
 et al.,
Nucl. Instrum. Methods Phys. Res., Sect. A
964
,
163774
(
2020
).
12.
L.
Ballabio
,
J.
Källne
, and
G.
Gorini
,
Nucl. Fusion
38
,
1723
(
1998
).
13.
B.
Appelbe
and
J.
Chittenden
,
Plasma Phys. Controlled Fusion
53
,
045002
(
2011
).
14.
15.
T. J.
Murphy
,
Phys. Plasmas
21
,
072701
(
2014
).
16.
R.
Hatarik
,
R. C.
Nora
,
B. K.
Spears
,
M. J.
Eckart
,
G. P.
Grim
,
E. P.
Hartouni
,
A. S.
Moore
, and
D. J.
Schlossberg
,
Rev. Sci. Instrum.
89
,
10I138
(
2018
).
17.
T. J.
Murphy
,
R. E.
Chrien
, and
K. A.
Klare
,
Rev. Sci. Instrum.
68
,
614
(
1997
).
18.
K. M.
Woo
 et al.,
Phys. Plasmas
25
,
102710
(
2018
).
19.
A. J.
Crilly
,
B. D.
Appelbe
,
K.
McGlinchey
,
C. A.
Walsh
,
J. K.
Tong
,
A. B.
Boxall
, and
J. P.
Chittenden
,
Phys. Plasmas
25
,
122703
(
2018
).
20.
A. J.
Crilly
,
B. D.
Appelbe
,
O. M.
Mannion
,
C. J.
Forrest
, and
J. P.
Chittenden
, “
The effect of areal density asymmetries on scattered neutron spectra in ICF implosions
,”
Phys. Plasmas
28
,
022710
(
2021
).
21.
G. P.
Grim
 et al.,
Phys. Plasmas
20
,
056320
(
2013
).
22.
Z. L.
Mohamed
,
O. M.
Mannion
,
J. P.
Knauer
,
C. J.
Forrest
,
V. Yu.
Glebov
, and
C.
Stoeckl
, “
Application of an energy-dependent instrument response function to analysis of nTOF data from cryogenic DT experiments
,” Rev. Sci. Instrum. (to be published).
23.
M.
Gatu Johnson
 et al.,
Rev. Sci. Instrum.
83
,
10D308
(
2012
).
24.
R. A.
Lerche
,
L. W.
Coleman
,
J. W.
Houghton
,
D. R.
Speck
, and
E. K.
Storm
,
Appl. Phys. Lett.
31
,
645
(
1977
).
25.
D. G.
Hicks
, Ph.D. thesis,
Massachusetts Institute of Technology
,
1999
.
26.
J. A.
Frenje
,
C. K.
Li
,
F. H.
Séguin
,
D. T.
Casey
,
R. D.
Petrasso
,
T. C.
Sangster
,
R.
Betti
,
V. Yu.
Glebov
, and
D. D.
Meyerhofer
,
Phys. Plasmas
16
,
042704
(
2009
).
27.
O. M.
Mannion
,
V. Yu.
Glebov
,
C. J.
Forrest
,
J. P.
Knauer
,
V. N.
Goncharov
,
S. P.
Regan
,
T. C.
Sangster
,
C.
Stoeckl
, and
M.
Gatu Johnson
,
Rev. Sci. Instrum.
89
,
10I131
(
2018
).
28.
G. J.
Schmid
 et al.,
Rev. Sci. Instrum.
74
,
1828
(
2003
).
29.
V. Yu.
Glebov
,
C.
Stoeckl
,
C. J.
Forrest
,
J. P.
Knauer
,
O. M.
Mannion
,
M. H.
Romanofsky
,
T. C.
Sangster
, and
S. P.
Regan
,
Rev. Sci. Instrum.
92
,
013509
(
2021
).
30.
R. A.
Lerche
and
B. A.
Remington
,
Rev. Sci. Instrum.
61
,
3131
(
1990
).
31.
R.
Hatarik
 et al.,
J. Appl. Phys.
118
,
184502
(
2015
).
32.
Z. L.
Mohamed
,
O. M.
Mannion
,
E. P.
Hartouni
,
J. P.
Knauer
, and
C. J.
Forrest
,
J. Appl. Phys.
128
,
214501
(
2020
).
33.
C. J.
Forrest
 et al.,
Nucl. Instrum. Methods Phys. Res., Sect. A
888
,
169
(
2018
).
34.
T.
Goorley
 et al.,
Nucl. Technol.
180
,
298
(
2012
).
35.
C.
Stoeckl
 et al.,
Rev. Sci. Instrum.
87
,
053501
(
2016
).
36.
R. A.
Lerche
,
D. R.
Kania
,
S. M.
Lane
,
G. L.
Tietbohl
,
C. K.
Bennett
, and
G. P.
Baltzer
,
Rev. Sci. Instrum.
59
,
1697
(
1988
).
37.
M.
Gatu Johnson
 et al.,
Rev. Sci. Instrum.
89
,
10I129
(
2018
).
38.
S.
Agostinelli
 et al.,
Nucl. Instrum. Methods Phys. Res., Sect. A
506
,
250
(
2003
).
39.
G.
Cowan
,
Statistical Data Analysis
(
Clarendon Press
,
1998
), p.
197
.
40.
D.
Foreman-Mackey
,
D. W.
Hogg
,
D.
Lang
, and
J.
Goodman
,
Publ. Astron. Soc. Pac.
125
,
306
(
2013
).
41.
O. M.
Mannion
 et al., “
Mitigation of mode-one asymmetry in laser-direct-drive inertial confinement fusion implosions
,” Phys. Plasmas (submitted).
42.
K. M.
Woo
 et al.,
Phys. Plasmas
27
,
062702
(
2020
).
43.
O. A.
Hurricane
 et al.,
Phys. Plasmas
27
,
062704
(
2020
).
44.
H. G.
Rinderknecht
,
D. T.
Casey
,
R.
Hatarik
,
R. M.
Bionta
,
B. J.
MacGowan
,
P.
Patel
,
O. L.
Landen
,
E. P.
Hartouni
, and
O. A.
Hurricane
,
Phys. Rev. Lett.
124
,
145002
(
2020
).
You do not currently have access to this content.