In magnetically confined fusion experiments, laser interferometer/polarimeter systems allow one to determine plasma density, give valuable information on the internal magnetic fields, and contribute to the evaluation of the plasma magnetic equilibrium and to the real-time estimation of the q profile to allow feedback configuration control. This work presents an analysis of the interferometric and polarimetric signals of a multi-chord far-infrared interferometer/polarimeter for the divertor tokamak test facility, the new tokamak device currently under construction in Italy. The polarimetric signals are calculated both with approximate formulas and by solving the equation describing the evolution of the laser beam polarization inside the plasma using the Mueller formalism. The latter method correctly accounts for crosstalk between Faraday rotation and the Cotton–Mouton effect. The impact of the plasma birefringence on the interferometric phase shift is also studied, and it is found that a perturbation of the interferometric phase shift is present also in the case of an initial fixed linear polarization of the probe laser beam.

1.
R.
Martone
,
R.
Albanese
,
F.
Crisanti
,
P.
Martin
, and
A.
Pizzuto
,
DTT-Divertor Tokamak Test Facility, Interim Design Report
(
ENEA
,
2019
), https://www.dtt-project.enea.it/downloads/DTT_IDR_2019_WEB.pdf.
2.
A.
Boboc
,
B.
Bieg
,
R.
Felton
,
S.
Dalley
, and
Y.
Kravtsov
,
Rev. Sci. Instrum.
86
,
091301
(
2015
).
3.
M.
Brombin
,
A.
Boboc
,
A.
Murari
,
E.
Zilli
,
L.
Giudicotti
, and
JETEFDA Contributors
,
Rev. Sci. Instrum.
80
,
063506
(
2009
).
4.
D.
Fiorucci
,
P.
Innocente
,
D.
Terranova
,
C.
Mazzotta
, and
O.
Tudisco
,
J. Instrum.
15
,
C02041
(
2020
).
5.
Folder: FullPower_OptionA_R=2.19_SN_6T_5.5MA_QLK_596#, available from https://www.dtt-dms.enea.it.
6.
D.
Veron
, “
Interferometry in large plasma machines
,” in
Diagnostics for Fusion Reactor Conditions
(
Pergamanon Press
,
1982
), Vol. I, p.
199
.
7.
F. P.
Orsitto
,
A.
Boboc
,
P.
Gaudio
,
M.
Gelfusa
,
E.
Giovannozzi
,
C.
Mazzotta
,
A.
Murari
, and
JET EFDA Contributors
,
Plasma Phys. Controlled Fusion
53
,
035001
(
2011
).
8.
J.
Chen
,
W. X.
Ding
, and
D. L.
Brower
,
Plasma Phys. Controlled Fusion
60
,
085001
(
2018
).
9.
S. E.
Segre
,
Plasma Phys. Controlled Fusion
41
,
R57
R100
(
1999
).
10.
S. E.
Segre
,
Plasma Phys. Controlled Fusion
40
,
153
161
(
1998
).
11.
J. H.
Rommers
,
S.
Barry
,
R.
Behn
, and
C.
Nieswand
,
Plasma Phys. Controlled Fusion
40
,
2073
2080
(
1998
).
12.
J. H.
Rommers
and
J.
Howard
,
Plasma Phys. Controlled Fusion
38
,
1805
1816
(
1996
).
13.
L.
Giudicotti
and
R.
Pasqualotto
,
Plasma Phys. Controlled Fusion
57
,
125015
(
2015
).
14.
S. E.
Segre
and
V.
Zanza
,
J. Opt. Soc. Am. A
20
(
9
),
1804
1811
(
2003
).
15.
See https://www.vadiodes.com/en/products-6/detectors for Virginia Diodes Inc. website.
16.
J. H.
Irby
,
W. F.
Bergerson
,
D. L.
Brower
,
W. X.
Ding
,
E. S.
Marmar
, and
P.
Xu
,
J. Instrum.
7
,
C02033
(
2012
).
You do not currently have access to this content.