Here, we present a new instrument named LUNA2 (LUminescence iNstrument in Aarhus 2), which is purpose-built to measure dispersed fluorescence spectra of gaseous ions produced by electrospray ionization and cooled to low temperatures (<100 K). LUNA2 is, as an earlier room-temperature setup (LUNA), optimized for a high collection efficiency of photons and includes improvements based on our operational experience with LUNA. The fluorescence cell is a cylindrical Paul trap made of copper with a hole in the ring electrode to permit laser light to interact with the trapped ions, and one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The entrance and exit electrodes are both in physical contact with the liquid-nitrogen cooling unit to reduce cooling times. Mass selection is done in a two-step scheme where, first, high-mass ions are ejected followed by low-mass ions according to the Mathieu stability region. This scheme may provide a higher mass resolution than when only one DC voltage is used. Ions are irradiated by visible light delivered from a nanosecond 20-Hz pulsed laser, and dispersed fluorescence is measured with a spectrometer combined with an iCCD camera that allows intensification of the signal for a short time interval. LUNA2 contains an additional Paul trap that can be used for mass selection before ions enter the fluorescence cell, which potentially is relevant to diminishing RF heating in the cold trap. Successful operation of the setup is demonstrated from experiments with rhodamine dyes and oxazine-4, and spectral changes with temperature are identified.

1.
J. T.
Khoury
,
S. E.
Rodriguez-Cruz
, and
J. H.
Parks
,
J. Am. Soc. Mass Spectrom.
13
,
696
(
2002
).
2.
A. S.
Danell
and
J. H.
Parks
,
Int. J. Mass Spectrom.
229
,
35
(
2003
).
3.
K.
Chingin
,
H.
Chen
,
G.
Gamez
, and
R.
Zenobi
,
J. Am. Soc. Mass Spectrom.
20
,
1731
(
2009
).
4.
J.
Friedrich
,
J.
Fu
,
C. L.
Hendrickson
,
A. G.
Marshall
, and
Y.-S.
Wang
,
Rev. Sci. Instrum.
75
,
4511
(
2004
).
5.
N. A.
Sassin
,
S. C.
Everhart
,
B. B.
Dangi
,
K. M.
Ervin
, and
J. I.
Cline
,
J. Am. Soc. Mass Spectrom.
20
,
96
(
2009
).
6.
Q.
Bian
,
M. W.
Forbes
,
F. O.
Talbot
, and
R. A.
Jockusch
,
Phys. Chem. Chem. Phys.
12
,
2590
(
2010
).
7.
M.
Kordel
,
D.
Schooss
,
C.
Neiss
,
L.
Walter
, and
M. M.
Kappes
,
J. Phys. Chem. A
114
,
5509
(
2010
).
8.
V.
Rajagopal
,
C.
Stokes
, and
A.
Ferzoco
,
J. Am. Soc. Mass Spectrom.
29
,
260
(
2018
).
9.
K.
Honma
,
Phys. Chem. Chem. Phys.
20
,
26859
(
2018
).
10.
M. H.
Stockett
,
J.
Houmøller
,
K.
Støchkel
,
A.
Svendsen
, and
S.
Brøndsted Nielsen
,
Rev. Sci. Instrum.
87
,
053103
(
2016
).
11.
M. H.
Stockett
,
J.
Houmøller
, and
S.
Brøndsted Nielsen
,
J. Chem. Phys.
145
,
104303
(
2016
).
12.
S. M. J.
Wellman
and
R. A.
Jockusch
,
Chem. Eur. J.
23
,
7728
(
2017
).
13.
F.
Liedy
 et al.,
ChemPhysChem
19
,
3050
(
2018
).
14.
A. U.
Petersen
,
C.
Kjær
,
C.
Jensen
,
M.
Brøndsted Nielsen
, and
S.
Brøndsted Nielsen
,
Angew. Chem., Int. Ed.
59
,
20946
(
2020
).
15.
A. M.
Nagy
,
F. O.
Talbot
,
M. F.
Czar
, and
R. A.
Jockusch
,
J. Photochem. Photobiol. A
244
,
47
(
2012
).
16.
S. M. J.
Wellman
and
R. A.
Jockusch
,
J. Phys. Chem. A
119
,
6333
(
2015
).
17.
J. A.
Wyer
, in
Photophysics of Ionic Biochromophores
, edited by
S.
Brøndsted Nielsen
and
J. A.
Wyer
(
Springer
,
Heidelberg
,
2013
), Chap. 3.
18.
X.-B.
Wang
and
L.-S.
Wang
,
Rev. Sci. Instrum.
79
,
073108
(
2008
).
19.
M. Z.
Kamrath
,
R. A.
Relph
,
T. L.
Guasco
,
C. M.
Leavitt
, and
M. A.
Johnson
,
Int. J. Mass Spectrom.
300
,
91
(
2011
).
20.
E.
Andris
,
R.
Navrátil
,
J.
Jašík
,
M.
Puri
,
M.
Costas
,
L.
Que
, Jr.
, and
J.
Roithová
,
J. Am. Chem. Soc.
140
,
14391
(
2018
).
21.
W.
Zagorec-Marks
,
J. E. T.
Smith
,
M. M.
Foreman
,
S.
Sharma
, and
J. M.
Weber
,
Phys. Chem. Chem. Phys.
22
,
20295
(
2020
).
22.
J. U.
Andersen
,
P.
Hvelplund
,
S. B.
Nielsen
,
S.
Tomita
,
H.
Wahlgreen
,
S. P.
Møller
,
U. V.
Pedersen
,
J. S.
Forster
, and
T. J. D.
Jørgensen
,
Rev. Sci. Instrum.
73
,
1284
(
2002
).
23.
B. D.
Adamson
,
N. J. A.
Coughlan
,
R. E.
Continetti
, and
E. J.
Bieske
,
Phys. Chem. Chem. Phys.
15
,
9540
(
2013
).
24.
J.
Cao
,
C.
Hu
,
W.
Sun
,
Q.
Xu
,
J.
Fan
,
F.
Song
,
S.
Sun
, and
X.
Peng
,
RSC Adv.
4
,
13385
(
2014
).
25.
S.
Upadhyayula
,
V.
Nuñez
,
E. M.
Espinoza
,
J. M.
Larsen
,
D.
Bao
,
D.
Shi
,
J. T.
Mac
,
B.
Anvari
, and
V. I.
Vullev
,
Chem. Sci.
6
,
2237
(
2015
).
26.
A. V.
Bochenkova
and
L. H.
Andersen
,
Faraday Discuss.
163
,
297
(
2013
).
27.
M. W.
Forbes
and
R. A.
Jockusch
,
J. Am. Chem. Soc.
131
,
17038
(
2009
).
28.
N. M.
Webber
,
K. L.
Litvinenko
, and
S. R.
Meech
,
J. Phys. Chem. B
105
,
8036
(
2001
).
29.
K. L.
Litvinenko
,
N. M.
Webber
, and
S. R.
Meech
,
J. Phys. Chem. A
107
,
2616
(
2003
).
30.
J. F. J.
Todd
,
Mass Spectrom. Rev.
10
,
3
(
1991
).
31.
B. H.
Mahan
and
A.
O’Keefe
,
J. Chem. Phys.
74
,
5606
(
1981
).
32.
J. M.
Wells
,
E. R.
Badman
, and
R. G.
Cooks
,
Anal. Chem.
70
,
438
(
1998
).
33.
Z.
Hua
,
S.
Feng
,
Z.
Zhou
,
H.
Liang
,
Y.
Chen
, and
D.
Zhao
,
Rev. Sci. Instrum.
90
,
013101
(
2019
).
34.
J.-F.
Greisch
,
M. E.
Harding
,
M.
Kordel
,
W.
Klopper
,
M. M.
Kappes
, and
D.
Schooss
,
Phys. Chem. Chem. Phys.
15
,
8162
(
2013
).
35.
M. W.
Forbes
and
R. A.
Jockusch
,
J. Am. Soc. Mass Spectrom.
22
,
93
(
2011
).
36.
J.-F.
Greisch
,
M. E.
Harding
,
W.
Klopper
,
M. M.
Kappes
, and
D.
Schooss
,
J. Phys. Chem. A
118
,
3787
(
2014
).
37.
C.
Kjær
and
S.
Brøndsted Nielsen
,
Phys. Chem. Chem. Phys.
21
,
4600
(
2019
).
You do not currently have access to this content.