Aquaculture is a fundamental sector of the food industry nowadays. However, to become a sustainable and more profitable industry, it is necessary to monitor several associated parameters, such as temperature, salinity, ammonia, potential of hydrogen, nitrogen dioxide, bromine, among others. Their regular and simultaneous monitoring is expected to predict and avoid catastrophes, such as abnormal fish mortality rates. In this paper, we propose a novel anomaly detection approach for the early prediction of high fish mortality based on a multivariate Gaussian probability model. The goal of this approach is to determine the correlation between the number of daily registered physicochemical parameters of the fish tank water and the fish mortality. The proposed machine learning model was fitted with data from the weaning and pre-fattening phases of Senegalese sole (Solea senegalensis) collected over 2018, 2019, and 2020. This approach is suitable for real-time tracking and successful prediction of up to 80% of the high fish mortality rates. To the best of our knowledge, the proposed anomaly detection approach is the first time studied and applied in the framework of the aquaculture industry.

1.
U.
Desa
,
World Population Prospects 2019: Highlights
(
United Nations Department for Economic and Social Affairs
,
New York
,
2019
).
2.
O. A.
Otekunrin
,
O. A.
Otekunrin
,
B.
Sawicka
, and
I. A.
Ayinde
, “
Three decades of fighting against hunger in Africa: Progress, challenges and opportunities
,”
World Nutr.
11
,
86
111
(
2020
).
3.
FAO
, Technical guidelines for responsible fisheries,
Food and Agriculture Organization
,
2010
, pp.
11
46
.
4.
FAO
, How to feed the World in 2050,
Food and Agriculture Organization
,
2010
, pp.
1
35
.
5.
M.
Garcia
,
S.
Sendra
,
G.
Lloret
, and
J.
Lloret
, “
Monitoring and control sensor system for fish feeding in marine fish farms
,”
IET Commun.
5
,
1682
1690
(
2011
).
6.
M.
Dickson
,
A.
Nasr-Allah
,
D.
Kenawy
, and
F.
Kruijssen
, “
Increasing fish farm profitability through aquaculture best management practice training in Egypt
,”
Aquaculture
465
,
172
178
(
2016
).
7.
C.-T.
Chiang
, “
A CMOS seawater salinity to digital converter for IoT applications of fish farms
,”
IEEE Trans. Circuits Syst.
64
,
2591
2597
(
2017
).
8.
O.
Carnevali
,
F.
Maradonna
, and
G.
Gioacchini
, “
Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic
,”
Aquaculture
472
,
144
155
(
2017
).
9.
B. S.
Kamalam
,
F.
Medale
, and
S.
Panserat
, “
Utilisation of dietary carbohydrates in farmed fishes: New insights on influencing factors, biological limitations and future strategies
,”
Aquaculture
467
,
3
27
(
2017
).
10.
E.
Shava
and
C.
Gunhidzirai
, “
Fish farming as an innovative strategy for promoting food security in drought risk regions of Zimbabwe
,”
Jàmbá: J. Disaster Risk Stud.
9
,
a491
(
2017
).
11.
D. B.
Vaughan
,
A. S.
Grutter
, and
K. S.
Hutson
, “
Cleaner shrimp are a sustainable option to treat parasitic disease in farmed fish
,”
Sci. Rep.
8
,
13959
(
2018
).
12.
F.
Fazio
, “
Fish hematology analysis as an important tool of aquaculture: A review
,”
Aquaculture
500
,
237
242
(
2019
).
13.
B.
Ayd
n
ı and
L. A. L.
Barbas
, “
Sedative and anesthetic properties of essential oils and their active compounds in fish: A review
,”
Aquaculture
520
,
734999
(
2020
).
14.
O.
Dary
and
R.
Hurrell
,
Guidelines on Food Fortification with Micronutrients
(
World Health Organization, Food and Agricultural Organization of the United Nations
,
Geneva
,
2006
).
15.
M. C. M.
Beveridge
,
S. H.
Thilsted
,
M. J.
Phillips
,
M.
Metian
,
M.
Troell
, and
S. J.
Hall
, “
Meeting the food and nutrition needs of the poor: The role of fish and the opportunities and challenges emerging from the rise of aquaculture
,”
J. Fish Biol.
83
,
1067
1084
(
2013
).
16.
S.
Chakrabarti
, “
The fisheries and aquaculture advantage: Fostering food security and nutrition, increasing incomes and empowerment
,”
Int. Fund Agric. Develop.
2019
,
4
5
; available at https://ssrn.com/abstract=3671620.
17.
J.
Yuan
,
J.
Xiang
,
D.
Liu
,
H.
Kang
,
T.
He
,
S.
Kim
,
Y.
Lin
,
C.
Freeman
, and
W.
Ding
, “
Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture
,”
Nat. Clim. Change
9
,
318
322
(
2019
).
18.
J. G.
Silva
,
The State of World Fisheries and Aquaculture
(
Food and Agriculture Organization of the United Nations Press
,
Rome, Italy
,
2018
), pp.
1
227
.
19.
M.
Reverter
,
N.
Tapissier-Bontemps
,
S.
Sarter
,
P.
Sasal
, and
D.
Caruso
, “
Moving towards more sustainable aquaculture practices: A meta-analysis on the potential of plant-enriched diets to improve fish growth, immunity and disease resistance
,”
Rev. Aquacult.
13
,
537
555
(
2021
).
20.
L. M. P.
Valente
,
J.
Cornet
,
C.
Donnay-Moreno
,
J. P.
Gouygou
,
J. P.
Bergé
,
M.
Bacelar
,
C.
Escórcio
,
E.
Rocha
,
F.
Malhão
, and
M.
Cardinal
, “
Quality differences of gilthead sea bream from distinct production systems in Southern Europe: Intensive, integrated, semi-intensive or extensive systems
,”
Food Control
22
,
708
717
(
2011
).
21.
G. V.
Oddsson
, “
A definition of aquaculture intensity based on production functions—The aquaculture production intensity scale (APIS)
,”
Water
12
,
765
(
2020
).
22.
M. C. J.
Verdegem
,
R. H.
Bosma
, and
J. A. J.
Verreth
, “
Reducing water use for animal production through aquaculture
,”
Water Resour. Dev.
22
,
101
113
(
2006
).
23.
S. T.
Summerfelt
,
M. J.
Sharrer
,
S. M.
Tsukuda
, and
M.
Gearheart
, “
Process requirements for achieving full-flow disinfection of recirculating water using ozonation and UV irradiation
,”
Aquacult. Eng.
40
,
17
27
(
2009
).
24.
Y.
Tal
,
H. J.
Schreier
,
K. R.
Sowers
,
J. D.
Stubblefield
,
A. R.
Place
, and
Y.
Zohar
, “
Environmentally sustainable land-based marine aquaculture
,”
Aquaculture
286
,
28
35
(
2009
).
25.
J.
Bregnballe
 et al,
A Guide to Recirculation Aquaculture: An Introduction to the New Environmentally Friendly and Highly Productive Closed Fish Farming Systems
(
Food and Agriculture Organization
,
2010
).
26.
R. H.
Piedrahita
, “
Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation
,”
Aquaculture
226
,
35
44
(
2003
).
27.
K.
Al-Hussaini
,
S. M.
Zainol
,
R. B.
Ahmed
, and
S.
Daud
, “
IoT monitoring and automation data acquisition for recirculating aquaculture system using fog computing
,”
J. Comput. Hardware Eng.
1
,
1
12
(
2018
).
28.
N. A.
Othman
,
N. S.
Damanhuri
,
M. A. S.
Mazalan
,
S. A.
Shamsuddin
,
M. H.
Abbas
, and
B. C. C.
Meng
, “
Automated water quality monitoring system development via LabVIEW for aquaculture industry (Tilapia) in Malaysia
,”
Indones. J. Electr. Eng. Comput. Sci.
20
,
805
812
(
2020
).
29.
R.
Liu
,
B.
Yang
,
E.
Zio
, and
X.
Chen
, “
Artificial intelligence for fault diagnosis of rotating machinery: A review
,”
Mech. Syst. Signal Process.
108
,
33
47
(
2018
).
30.
S. A.
Popenici
and
S.
Kerr
, “
Exploring the impact of artificial intelligence on teaching and learning in higher education
,”
Res. Practice Technol. Enhanced Learn.
12
,
22
(
2017
).
31.
J.
He
,
S. L.
Baxter
,
J.
Xu
,
J.
Xu
,
X.
Zhou
, and
K.
Zhang
, “
The practical implementation of artificial intelligence technologies in medicine
,”
Nat. Med.
25
,
30
36
(
2019
).
32.
J.
Sterne
,
Artificial Intelligence for Marketing: Practical Applications
(
John Wiley & Sons
,
2017
).
33.
K.
Rathi
,
P.
Somani
,
A. V.
Koul
, and
K.
Manu
, “
Applications of artificial intelligence in the game of football: The global perspective
,”
Res. World
11
,
18
29
(
2020
).
34.
M.
Klumpp
, “
Automation and artificial intelligence in business logistics systems: Human reactions and collaboration requirements
,”
Int. J. Logist. Res. Appl.
21
,
224
242
(
2018
).
35.
B.-H.
Li
,
B.-C.
Hou
,
W.-T.
Yu
,
X.-B.
Lu
, and
C.-W.
Yang
, “
Applications of artificial intelligence in intelligent manufacturing: A review
,”
Front. Inf. Technol. Electron. Eng.
18
,
86
96
(
2017
).
36.
D. E.
O’Leary
, “
Artificial intelligence and big data
,”
IEEE Intell. Syst.
28
,
96
99
(
2013
).
37.
Y.
Duan
,
J. S.
Edwards
, and
Y. K.
Dwivedi
, “
Artificial intelligence for decision making in the era of Big Data-evolution, challenges and research agenda
,”
Int. J. Inf. Manage.
48
,
63
71
(
2019
).
38.
M.
Sun
,
X.
Yang
, and
Y.
Xie
, “
Deep learning in aquaculture: A review
,”
J. Comput.
31
,
294
319
(
2020
).
39.
X.
Yang
,
S.
Zhang
,
J.
Liu
,
Q.
Gao
,
S.
Dong
, and
C.
Zhou
, “
Deep learning for smart fish farming: Applications, opportunities and challenges
,”
Rev. Aquacult.
13
,
66
90
(
2021
).
40.
J.
Su
,
J.
Chen
,
J.
Wen
,
W.
Xie
, and
M.
Lin
, “
Analysis decision-making system for aquaculture water quality based on deep learning
,”
J. Phys.: Conf. Ser.
1544
,
1
6
(
2020
).
41.
H.
Yu
,
L.
Yang
,
D.
Li
, and
Y.
Chen
, “
A hybrid intelligent soft computing method for ammonia nitrogen prediction in aquaculture
,”
Inf. Process. Agric.
(published online
2021
).
42.
N. V.
Barulin
, “
Using machine learning algorithms to analyse the scute structure and sex identification of sterlet Acipenser ruthenus (Acipenseridae)
,”
Aquacult. Res.
50
,
2810
2825
(
2019
).
43.
C.
Zhou
,
D.
Xu
,
L.
Chen
,
S.
Zhang
,
C.
Sun
,
X.
Yang
, and
Y.
Wang
, “
Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision
,”
Aquaculture
507
,
457
465
(
2019
).
44.
L.
Yang
,
Y.
Liu
,
H.
Yu
,
X.
Fang
,
L.
Song
,
D.
Li
, and
Y.
Chen
, “
Computer vision models in intelligent aquaculture with emphasis on fish detection and behavior analysis: A review
,”
Arch. Comput. Methods Eng.
2020
,
1
32
.
45.
C.
Zhou
,
D.
Xu
,
K.
Lin
,
C.
Sun
, and
X.
Yang
, “
Intelligent feeding control methods in aquaculture with an emphasis on fish: A review
,”
Rev. Aquacult.
10
,
975
993
(
2018
).
46.
L. C. B.
Silva
,
B.
Lopes
,
M. J.
Pontes
,
I.
Blanquet
,
M. E. V.
Segatto
, and
C.
Marques
, “
Fast decision-making tool for monitoring recirculation aquaculture systems based on a multivariate statistical analysis
,”
Aquaculture
530
,
735931
(
2021
).
47.
C. W. C.
Rasmussen
,
Gaussian Processes for Machine Learning
(
Massachusetts Institute of Technology
,
2006
), pp.
19
120
.
48.
Y.
Bengio
and
Y.
Grandvalet
, “
No unbiased estimator of the variance of k-fold cross-validation
,”
J. Mach. Learn. Res.
5
,
1089
1105
(
2004
).
49.
J. D.
Rodriguez
,
A.
Perez
, and
J. A.
Lozano
, “
Sensitivity analysis of k-fold cross validation in prediction error estimation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
32
,
569
575
(
2009
).
50.
D. S.
Stoyanov
,
F.
Kherif
,
S.
Kandilarova
, and
R.
Paunova
, “
Cross-validation of functional MRI and paranoid-depressive scale: Results from multivariate analysis
,”
Front. Psychiatry
10
,
869
(
2019
).
51.
A.
Rohani
,
M.
Taki
, and
M.
Abdollahpour
, “
A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)
,”
Renewable Energy
115
,
411
422
(
2018
).
52.
K. S.
Raju
,
M. R.
Murty
,
M. V.
Rao
, and
S. C.
Satapathy
, “
Support vector machine with K-fold cross validation model for software fault prediction
,”
Int. J. Pure Appl. Math.
118
,
321
334
(
2018
).
53.
D.
Normawati
and
D. P.
Ismi
, “
K-fold cross validation for selection of cardiovascular disease diagnosis features by applying rule-based datamining
,”
Signal Image Process. Lett.
1
,
22
32
(
2019
).
54.
M.
Pardakhti
,
E.
Moharreri
,
D.
Wanik
,
S. L.
Suib
, and
R.
Srivastava
, “
Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs)
,”
ACS Comb. Sci.
19
,
640
645
(
2017
).
55.
G.
James
,
D.
Witten
,
T.
Hastie
, and
R.
Tibshirani
,
An Introduction to Statistical Learning
(
Springer
,
2013
), Vol. 112, pp.
181
183
.
56.
K.
Polat
,
S.
Güneş
, and
A.
Arslan
, “
A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine
,”
Expert Syst. Appl.
34
,
482
487
(
2008
).
57.
Z. C.
Lipton
,
C.
Elkan
, and
B.
Naryanaswamy
, “
Optimal thresholding of classifiers to maximize F1 measure
,” in
Joint European Conference on Machine Learning and Knowledge Discovery in Databases
(
Springer
,
Berlin
,
2014
), Vol. 8725, pp.
225
239
.
58.
R.
Kohavi
 et al, “
A study of cross-validation and bootstrap for accuracy estimation and model selection
,” in
International Joint Conference on Artificial Intelligence
(
American Association for Artificial Intelligence
,
Montreal, Canada
,
1995
), Vol. 14, pp.
1137
1145
.
59.
S.
Ioffe
and
C.
Szegedy
, “
Batch normalization: Accelerating deep network training by reducing internal covariate shift
,” in
International Conference on Machine Learning
(
PMLR
,
2015
), Vol. 37, p.
448
456
.
60.
K.
Benoit
, “
Linear regression models with logarithmic transformations
,” (
London School of Economics
,
London
,
2011
), Vol. 22, pp.
23
36
; available at https://links.sharezomics.com/assets/uploads/files/1600247928973-from_slack_logmodels2.pdf.
61.
A. B.
Ahmed
,
I.
Musonda
, and
J.
Pretorius
, “
Natural logarithm transformation for predicting procurement time of PPP projects in Nigeria
,”
Cogent Eng.
6
,
1
17
(
2019
).
62.
C. I. M.
Martins
,
E. H.
Eding
,
M. C. J.
Verdegem
,
L. T. N.
Heinsbroek
,
O.
Schneider
,
J. P.
Blancheton
,
E. R.
d’Orbcastel
, and
J. A. J.
Verreth
, “
New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability
,”
Aquacult. Eng.
43
,
83
93
(
2010
).
63.
N.
Aich
,
S.
Nama
,
A.
Biswal
, and
T.
Paul
, “
A review on recirculating aquaculture systems: Challenges and opportunities for sustainable aquaculture
,”
Innovative Farm.
5
,
17
24
(
2020
).
64.
FAO
, Cultured Aquatic Species Information Programme. Solea Spp. (S. solea, S. senegalensis),
Food and Agriculture Organization
,
2020
.
65.
E.
Salas-Leiton
,
I.
Hachero-Cruzado
,
E.
Asensio
,
C.
Vilas
,
R.
Zerolo
, and
J.
Cañavate
, “
Valorisation and enhanced sustainability of Senegalese sole (Solea senegalensis) aquaculture by dietary use of ditch shrimp (Palaemonetes varians) meal
,”
Aquaculture
522
,
735104
(
2020
).
66.
W. Á.
González-López
,
S.
Ramos-Júdez
,
I.
Giménez
, and
N. J.
Duncan
, “
Sperm contamination by urine in Senegalese sole (Solea senegalensis) and the use of extender solutions for short-term chilled storage
,”
Aquaculture
516
,
734649
(
2020
).
67.
M.
Torres
,
J.
Navarro
,
I.
Varó
,
M.
Agulleiro
,
S.
Morais
,
Ó.
Monroig
, and
F.
Hontoria
, “
Expression of genes related to long-chain (C18−22) and very long-chain (>C24) fatty acid biosynthesis in gilthead seabream (Sparus aurata) and Senegalese sole (Solea senegalensis) larvae: Investigating early ontogeny and nutritional regulation
,”
Aquaculture
520
,
734949
(
2020
).
68.
E.
Fatsini
,
S.
Rey
,
Z.
Ibarra-Zatarain
,
S.
Boltaña
,
S.
Mackenzie
, and
N. J.
Duncan
, “
Linking stress coping styles with brain mRNA abundance of selected transcripts for Senegalese sole (Solea senegalensis) juveniles
,”
Physiol. Behav.
213
,
112724
(
2020
).
69.
M. P.
Escribano
,
L.
Ramos-Pinto
,
S.
Fernández-Boo
,
A.
Afonso
,
B.
Costas
, and
F. A.
Guardiola
, “
Mucosal immune responses in Senegalese sole (Solea senegalensis) juveniles after Tenacibaculum maritimum challenge: A comparative study between ocular and blind sides
,”
Fish Shellfish Immunol.
104
,
92
100
(
2020
).
70.
Z.
Ibarra-Zatarain
,
I.
Martín
,
I.
Rasines
,
E.
Fatsini
,
S.
Rey
,
O.
Chereguini
, and
N.
Duncan
, “
Exploring the relationship between stress coping styles and sex, origin and reproductive success, in Senegalese sole (Solea senegalensis) breeders in captivity
,”
Physiol. Behav.
220
,
112868
(
2020
).
71.
C.
Leitão
,
A.
Leal-Junior
,
A. R.
Almeida
,
S. O.
Pereira
,
F. M.
Costa
,
J. L.
Pinto
, and
C.
Marques
, “
Cortisol AuPd plasmonic unclad POF biosensor
,”
Biotechnology Reports
29
,
e00587
(
2021
).
72.
C.
Leitão
,
S. O.
Pereira
,
N.
Alberto
,
M.
Lobry
,
M.
Loyez
,
F. M.
Costa
,
J. L.
Pinto
,
C.
Caucheteur
, and
C.
Marques
, “
Cortisol in-fiber ultrasensitive plasmonic immunosensing
,”
IEEE Sens. J.
21
,
3028
3034
(
2021
).
73.
S.
Kumar
,
Z.
Guo
,
R.
Singh
,
Q.
Wang
,
B.
Zhang
,
S.
Cheng
,
F.-Z.
Liu
,
C.
Marques
,
B. K.
Kaushik
, and
R.
Jha
, “
MoS2 functionalized multicore fiber probes for selective detection of Shigella bacteria based on localized plasmon
,”
J. Lightwave Technol.
(published online
2020
).
74.
A. G.
Leal-Junior
,
A.
Frizera
, and
C.
Marques
, “
High sensitive ammonia detection in water with Fabry-Perot interferometers
,”
IEEE Photonics Technol. Lett.
32
,
863
866
(
2020
).
75.
A. G.
Leal-Junior
,
A.
Frizera
, and
C.
Marques
, “
Low-cost fiberoptic probe for ammonia early detection in fish farms
,”
Remote Sens.
12
,
1439
(
2020
).
You do not currently have access to this content.