In this paper, we present a cable-driven exoskeleton with variable stiffness for upper limb rehabilitation. Adjustable stiffness of the cable-driven exoskeleton is achieved by attaching a novel variable stiffness module (VSM) to each driving cable. The module is able to vary stiffness in a large range through changing cable tension. In this paper, a stiffness model is developed for a cable-driven exoskeleton to reveal the stiffness performance of the exoskeleton with the influence of VSMs. Based on the stiffness model, a controller with stiffness-oriented strategy is proposed to vary the stiffness of the exoskeleton. Experiments on a prototype of a cable-driven exoskeleton are conducted to validate the controller.

1.
C. D.
Wolfe
, “
The impact of stroke
,”
Br. Med. Bull.
56
,
275
286
(
2000
).
2.
R.
Gopura
,
D.
Bandara
,
K.
Kiguchi
, and
G.
Mann
, “
Developments in hardware systems of active upper-limb exoskeleton robots: A review
,”
Rob. Auton. Syst.
75
,
203
220
(
2016
).
3.
Y.
Jin
,
I.-M.
Chen
, and
G.
Yang
, “
Kinematics analysis of a 6-DOF selectively actuated parallel manipulator
,” in
IEEE International Conference on Robotics, Automation and Mechatronics
(
IEEE
,
2004
), pp.
231
236
.
4.
S.-R.
Oh
and
S. K.
Agrawal
, “
Generation of feasible set points and control of a cable robot
,”
IEEE Trans. Rob.
22
,
551
558
(
2006
).
5.
I.
Ebert-Uphoff
and
P. A.
Voglewede
, “
On the connections between cable-driven robots, parallel manipulators and grasping
,” in
IEEE International Conference on Robotics and Automation
(
IEEE
,
2004
), pp.
4521
4526
.
6.
G.
Yang
,
H. L.
Ho
,
W.
Chen
,
W.
Lin
,
S. H.
Yeo
, and
M. S.
Kurbanhusen
, “
A haptic device wearable on a human arm
,” in
IEEE International Conference on Robotics, Automation and Mechatronics
(
IEEE
,
2004
), pp.
243
247
.
7.
A. M.
Lytle
,
K. S.
Saidi
,
R. V.
Bostelman
,
W. C.
Stone
, and
N. A.
Scott
, “
Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: Experiences with the NIST RoboCrane
,”
Autom. Constr.
13
,
101
118
(
2004
).
8.
H.
Bayani
,
M. T.
Masouleh
, and
A.
Kalhor
, “
An experimental study on the vision-based control and identification of planar cable-driven parallel robots
,”
Rob. Auton. Syst.
75
,
187
202
(
2016
).
9.
Y.
Liang
,
Z.
Du
,
W.
Wang
,
Z.
Yan
, and
L.
Sun
, “
An improved scheme for eliminating the coupled motion of surgical instruments used in laparoscopic surgical robots
,”
Rob. Auton. Syst.
112
,
49
59
(
2019
).
10.
Y.
Mao
and
S. K.
Agrawal
, “
Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation
,”
IEEE Trans. Rob.
28
,
922
931
(
2012
).
11.
D.
Martelli
,
J.
Kang
, and
S. K.
Agrawal
, “
A single session of perturbation-based gait training with the A-TPAD improves dynamic stability in healthy young subjects
,” in
2017 International Conference on Rehabilitation Robotics (ICORR)
(
IEEE
,
2017
), pp.
479
484
.
12.
V.
Vashista
,
X.
Jin
, and
S. K.
Agrawal
, “
Active tethered pelvic assist device (A-TPAD) to study force adaptation in human walking
,” in
2014 IEEE International Conference on Robotics and Automation (ICRA)
(
IEEE
,
2014
), pp.
718
723
.
13.
M. J.-D.
Otis
,
M.
Mokhtari
,
C.
Du Tremblay
,
D.
Laurendeau
,
F.-M.
de Rainville
, and
C. M.
Gosselin
, “
Hybrid control with multi-contact interactions for 5-DOF haptic foot platform on a cable-driven locomotion interface
,” in
2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
(
IEEE Computer Society
,
2008
), pp.
161
168
.
14.
Y.
Jin
,
I.
Chen
, and
G.
Yang
, “
Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation
,”
IEEE Trans. Rob.
22
,
545
551
(
2006
).
15.
S.
Mendis
, “
Stroke disability and rehabilitation of stroke: World Health Organization perspective
,”
Int. J. Stroke: Off. J. Int. Stroke Soc.
8
,
3
4
(
2013
).
16.
R.
Colombo
,
F.
Pisano
,
S.
Micera
,
A.
Mazzone
,
C.
Delconte
,
M. C.
Carrozza
,
P.
Dario
, and
G.
Minuco
, “
Robotic techniques for upper limb evaluation and rehabilitation of stroke patients
,”
IEEE Trans. Neural Syst. Rehab. Eng.
13
,
311
324
(
2005
).
17.
J. T.
Bryson
,
X.
Jin
, and
S. K.
Agrawal
, “
Optimal design of cable-driven manipulators using particle swarm optimization
,”
J. Mech. Rob.
8
,
0410031
0410038
(
2016
).
18.
M.
Anson
,
A.
Alamdari
, and
V.
Krovi
, “
Orientation workspace and stiffness optimization of cable-driven parallel manipulators with base mobility
,”
J. Mech. Rob.
9
,
0310111
03101116
(
2017
).
19.
K.
Yu
,
L.
Lee
,
C. P.
Tang
, and
V. N.
Krovi
, “
Enhanced trajectory tracking control with active lower bounded stiffness control for cable robot
,” in
IEEE International Conference on Robotics and Automation
(
IEEE
,
2010
), pp.
669
674
.
20.
J.
Bolboli
,
M. A.
Khosravi
, and
F.
Abdollahi
, “
Stiffness feasible workspace of cable-driven parallel robots with application to optimal design of a planar cable robot
,”
Rob. Auton. Syst.
114
,
19
28
(
2019
).
21.
S.
Kawamura
,
W.
Choe
,
S.
Tanaka
, and
S.
Pandian
, “
Development of an ultrahigh speed robot FALCON using wire drive system
,” in
Proceedings of 1995 IEEE International Conference on Robotics and Automation
(
IEEE
,
1995
), Vol. 1, pp.
215
220
.
22.
K.
Koganezawa
,
Y.
Watanabe
, and
N.
Shimizu
, “
Antagonistic muscle-like actuator and its application to multi-d.o.f. forearm prosthesis
,”
Adv. Rob.
12
,
771
789
(
1997
).
23.
J.
Wang
,
G.
Yang
,
K.
Yang
, and
C.-Y.
Chen
, “
Design of a flexure-based variable stiffness device for cable-driven joint modules
,” in
2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
IEEE
,
2015
), pp.
2353
2358
.
24.
M.
Osada
,
N.
Ito
,
Y.
Nakanishi
, and
M.
Inaba
, “
Realization of flexible motion by musculoskeletal humanoid “Kojiro” with add-on nonlinear spring units
,” in
IEEE-RAS International Conference on Humanoid Robots
(
IEEE
,
2010
), pp.
174
179
.
25.
G.
Tonietti
,
R.
Schiavi
, and
A.
Bicchi
, “
Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction
,” in
IEEE International Conference on Robotics and Automation
(
IEEE
,
2005
), pp.
526
531
.
26.
S. H.
Yeo
,
G.
Yang
, and
W. B.
Lim
, “
Design and analysis of cable-driven manipulators with variable stiffness
,”
Mech. Mach. Theory
69
,
230
244
(
2013
).
27.
Z.
Li
and
S.
Bai
, “
A novel revolute joint of variable stiffness with reconfigurability
,”
Mech. Mach. Theory
133
,
720
736
(
2019
).
28.
Y.
Yang
,
W.
Chen
,
X.
Wu
, and
Q.
Chen
, “
Stiffness analysis of 3-DOF spherical joint based on cable-driven humanoid arm
,” in
2010 5th IEEE Conference on Industrial Electronics and Applications
(
IEEE
,
2010
), pp.
99
103
.
29.
D.
Zhang
, “
Global stiffness modeling and optimization of a 5-DOF parallel mechanism
,” in
2009 International Conference on Mechatronics and Automation
(
IEEE
,
2009
), pp.
3551
3556
.
30.
B. S.
El-Khasawneh
and
P. M.
Ferreira
, “
Computation of stiffness and stiffness bounds for parallel link manipulators
,”
Int. J. Mach. Tools Manuf.
39
,
321
342
(
1999
).
31.
M.
Ceccarelli
and
G.
Carbone
, “
A stiffness analysis for CaPaMan (Cassino parallel manipulator)
,”
Mech. Mach. Theory
37
,
427
439
(
2002
).
32.
W.
Chen
,
L.
Zhang
,
L.
Yan
, and
J.
Liu
, “
Design and control of a three degree-of-freedom permanent magnet spherical actuator
,”
Sens. Actuators, A
180
,
75
86
(
2012
).
33.
J.
Alvarez
,
J. C.
Arceo
,
C.
Armenta
,
J.
Lauber
, and
M.
Bernal
, “
An extension of computed-torque control for parallel robots in ankle reeducation
,”
IFAC-PapersOnLine
52
,
1
6
(
2019
).
34.
C. H.
An
,
C. G.
Atkeson
,
J. D.
Griffiths
, and
J. M.
Hollerbach
, “
Experimental evaluation of feedforward and computed torque control
,”
IEEE Trans. Rob. Autom.
5
,
368
373
(
1989
).
35.
K.
Maeda
,
S.
Tadokoro
,
T.
Takamori
,
M.
Hiller
, and
R.
Verhoeven
, “
On design of a redundant wire-driven parallel robot WARP manipulator
,” in
Proceedings of 1999 IEEE International Conference on Robotics and Automation
(
IEEE
,
1999
), Vol. 2, pp.
895
900
.
36.
C. B.
Pham
,
S. H.
Yeo
,
G.
Yang
, and
I.-M.
Chen
, “
Workspace analysis of fully restrained cable-driven manipulators
,”
Rob. Auton. Syst.
57
,
901
912
(
2009
).
37.
W. B.
Lim
,
S. H.
Yeo
,
G.
Yang
,
S. K.
Mustafa
, and
Z.
Zhang
, “
Tension optimization for cable-driven parallel manipulators using gradient projection
,” in
2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
(
IEEE
,
2011
), pp.
73
78
.
38.
W. B.
Lim
,
S. H.
Yeo
, and
G.
Yang
, “
Optimization of tension distribution for cable-driven manipulators using tension-level index
,”
IEEE/ASME Trans. Mechatron.
19
,
676
683
(
2014
).
39.
H. D.
Taghirad
and
Y. B.
Bedoustani
, “
An analytic-iterative redundancy resolution scheme for cable-driven redundant parallel manipulators
,”
IEEE Trans. Rob.
27
,
1137
1143
(
2011
).
You do not currently have access to this content.