We show that a cryogenic amplifier composed of a homemade GaAs high-electron-mobility transistor (HEMT) is suitable for current-noise measurements in a mesoscopic device at dilution-refrigerator temperatures. The lower noise characteristics of our homemade HEMT lead to a lower noise floor in the experimental setup and enable more efficient current-noise measurement than is available with a commercial HEMT. We present the dc transport properties of the HEMT and the gain and noise characteristics of the amplifier. With the amplifier employed for current-noise measurements in a quantum point contact, we demonstrate the high resolution of the measurement setup by comparing it with that of the conventional one using a commercial HEMT.

1.
R.
Landauer
, “
Solid-state shot noise
,”
Phys. Rev. B
47
,
16427
16432
(
1993
).
2.
Y. M.
Blanter
and
M.
Büttiker
, “
Shot noise in mesoscopic conductors
,”
Phys. Rep.
336
,
1
(
2000
).
3.
T.
Martin
, “
Noise in mesoscopic physics
,” in
Nanophysics: Coherence and Transport
, edited by
H.
Bouchiat
,
Y.
Gefen
,
S.
Guéron
,
G.
Montambaux
, and
J.
Dalibard
(
Elsevier
,
2005
), pp.
283
359
.
4.
L.
Saminadayar
,
D. C.
Glattli
,
Y.
Jin
, and
B.
Etienne
, “
Observation of the e/3 fractionally charged Laughlin quasiparticle
,”
Phys. Rev. Lett.
79
,
2526
2529
(
1997
).
5.
R.
de-Picciotto
,
M.
Reznikov
,
M.
Heiblum
,
V.
Umansky
,
G.
Bunin
, and
D.
Mahalu
, “
Direct observation of a fractional charge
,”
Nature
389
,
162
164
(
1997
).
6.
M.
Reznikov
,
R.
de-Picciotto
,
T. G.
Griffiths
,
M.
Heiblum
, and
V.
Umansky
, “
Observation of quasiparticles with one–fifth of an electron’s charge
,”
Nature
399
,
238
241
(
1999
).
7.
M.
Hashisaka
,
T.
Ota
,
K.
Muraki
, and
T.
Fujisawa
, “
Shot-noise evidence of fractional quasiparticle creation in a local fractional quantum Hall state
,”
Phys. Rev. Lett.
114
,
056802
(
2015
).
8.
O.
Zarchin
,
M.
Zaffalon
,
M.
Heiblum
,
D.
Mahalu
, and
V.
Umansly
, “
Two-electron bunching in transport through a quantum dot induced by Kondo correlations
,”
Phys. Rev. B
77
,
241303
(
2008
).
9.
Y.
Yamauchi
,
K.
Sekiguchi
,
K.
Chida
,
T.
Arakawa
,
S.
Nakamura
,
K.
Kobayashi
,
T.
Ono
,
T.
Fujii
, and
R.
Sakano
, “
Evolution of the Kondo effect in a quantum dot proved by shot noise
,”
Phys. Rev. Lett.
106
,
176601
(
2011
).
10.
M.
Ferrier
,
T.
Arakawa
,
T.
Hata
,
R.
Fujiwara
,
R.
Delagrange
,
R.
Weil
,
R.
Deblock
,
R.
Sakano
,
A.
Oguri
, and
K.
Kobayashi
, “
Universality of non-equilibrium fluctuations in strongly correlated quantum liquids
,”
Nat. Phys.
12
,
230
235
(
2016
).
11.
L.
DiCarlo
,
Y.
Zhang
,
D. T.
McClure
,
C. M.
Marcus
,
L. N.
Pfeiffer
, and
K. W.
West
, “
System for measuring auto- and cross-correlation of current noise at low temperatures
,”
Rev. Sci. Instrum.
77
,
073906
(
2006
).
12.
M.
Hashisaka
,
Y.
Yamauchi
,
K.
Chida
,
S.
Nakamura
,
K.
Kobayashi
, and
T.
Ono
, “
Noise measurement system at electron temperature down to 20 mK with combinations of the low pass filters
,”
Rev. Sci. Instrum.
80
,
096105
(
2009
).
13.
T.
Arakawa
,
Y.
Nishihara
,
M.
Maeda
,
S.
Norimoto
, and
K.
Kobayashi
, “
Cryogenic amplifier for shot noise measurement at 20 mK
,”
Appl. Phys. Lett.
103
,
172104
(
2013
).
14.
M.
Hashisaka
,
T.
Ota
,
M.
Yamagishi
,
T.
Fujisawa
, and
K.
Muraki
, “
Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers
,”
Rev. Sci. Instrum.
85
,
054704
(
2014
).
15.
N.
Oukhanski
,
M.
Grajcar
,
E.
Il’ichev
, and
H.-G.
Meyer
, “
Low noise, low power consumption high electron mobility transistors amplifier, for temperatures below 1 K
,”
Rev. Sci. Instrum.
74
,
1145
1146
(
2003
).
16.
N.
Oukhanski
and
E.
Hoenig
, “
Ultrasensitive radio-frequency pseudomorphic high-electron-mobility- transistor readout for quantum devices
,”
Appl. Phys. Lett.
85
,
2956
2958
(
2004
).
17.
A. M.
Robinson
and
V. I.
Talyanskii
, “
Cryogenic amplifier for ∼1 MHz with a high input impedance using a commercial pseudo-morphic high electron mobility transistor
,”
Rev. Sci. Instrum.
75
,
3169
3176
(
2004
).
18.
I. T.
Vink
,
T.
Nooitgedagt
,
R. N.
Schouten
,
L. M. K.
Vandersypen
, and
W.
Wegscheider
, “
Cryogenic amplifier for fast real-time detection of single-electron tunneling
,”
Appl. Phys. Lett.
91
,
123512
(
2007
).
19.
L. A.
Tracy
,
D. R.
Luhman
,
S. M.
Carr
,
N. C.
Bishop
,
G. A.
Ten Eyck
,
T.
Pluym
,
J. R.
Wendt
,
M. P.
Lilly
, and
M. S.
Carroll
, “
Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures
,”
Appl. Phys. Lett.
108
,
063101
(
2016
).
20.
K. M.
Bastiaans
,
T.
Benschop
,
D.
Chatzopoulos
,
D.
Cho
,
Q.
Dong
,
Y.
Jin
, and
M. P.
Allan
, “
Amplifier for scanning tunneling microscopy at MHz frequencies
,”
Rev. Sci. Instrum.
89
,
093709
(
2018
).
21.
Q.
Dong
,
Y. X.
Liang
,
U.
Gennser
,
A.
Cavanna
, and
Y.
Jin
, “
The role of the gate geometry for cryogenic HEMTs: Towards an input voltage noise below 0.5 nV/√Hz at 1 kHz and 4.2 K
,”
J. Low Temp. Phys.
167
,
626
631
(
2012
).
22.
Y. X.
Liang
,
Q.
Dong
,
U.
Gennser
,
A.
Cavanna
, and
Y.
Jin
, “
Input noise voltage below 1 nV/Hz 1/2 at 1 kHz in the HEMTs at 4.2 K
,”
J. Low Temp. Phys.
167
,
632
637
(
2012
).
23.
Q.
Dong
,
Y. X.
Liang
,
D.
Ferry
,
A.
Cavanna
,
U.
Gennser
,
L.
Couraud
, and
Y.
Jin
, “
Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electronics
,”
Appl. Phys. Lett.
105
,
013504
(
2014
).
24.
A.
Juillard
,
J.
Billard
,
D.
Chaize
,
J.-B.
Filippini
,
D.
Misiak
,
L.
Vagneron
,
A.
Cavanna
,
Q.
Dong
,
Y.
Jin
,
C.
Ulysse
,
A.
Bounab
,
X.
de la Broise
,
C.
Nones
, and
A.
Phipps
, “
Low-noise HEMTs for coherent elastic neutrino scattering and low-mass dark matter cryogenic semiconductor detectors
,”
J. Low Temp. Phys.
199
,
798
806
(
2020
).
25.
N. T. M.
Tran
,
Y.
Okazaki
,
S.
Nakamura
,
M.
Ortolano
, and
N.-H.
Kaneko
, “
Low-noise and wide-bandwidth current readout at low temperatures using a superconducting-quantum-interference-device amplifier
,”
Jpn. J. Appl. Phys., Part 1
56
,
04CK10
(
2017
).
26.
F.
Wilczek
, “
Magnetic flux, angular momentum, and statistics
,”
Phys. Rev. Lett.
48
,
1144
1146
(
1982
).
27.
H.
Bartolomei
,
M.
Kumar
,
R.
Bisognin
,
A.
Marguerite
,
J.-M.
Berroir
,
E.
Bocquillon
,
B.
Plaçais
,
A.
Cavanna
,
Q.
Dong
,
U.
Gennser
,
Y.
Jin
, and
G.
Fève
, “
Fractional statistics in anyon collisions
,”
Science
368
,
173
177
(
2020
).
28.
P.
Samuelsson
,
E. V.
Sukhorukov
, and
M.
Büttiker
, “
Two-particle aharonov-Bohm effect and entanglement in the electronic Hanbury Brown-Twiss setup
,”
Phys. Rev. Lett.
92
,
026805
(
2004
).
29.
A.
van der Ziel
,
Noise in Solid State Devices and Circuits
(
Wiley
,
New York
,
1986
), pp.
88
92
.
30.
A. L.
McWhorter
,
Semiconductor Surface Physics
(
University of Pennsylvania Press
,
Pennsylvania
,
1957
), p.
207
.
31.
F. N.
Hooge
, “
1/f noise in the conductance of ions in aqueous solutions
,”
Phys. Lett. A
33
,
169
170
(
1970
).
32.

The saturation of Ich near 20 mA for the W = 3 mm HEMT is due to the parasitic resistance of about 25 Ω, which is the sum of the ohmic contact resistance and the wiring resistance. We do not observe such saturation for the W = 1 mm HEMT over the measured Vg range because of its smaller contact resistance and the resultant smaller total parasitic resistance (about 20 Ω).

33.

The commercial HEMT becomes unstable above VDD = 0.4 V.

34.

We restricted the measurement up to P ≅ 1 mW to avoid the temperature rise of the 4 K stage.

35.

The SVHEMT peak near f = 900 kHz is an artifact originating from the noise in the power supply.

36.

At higher RL, the operating point becomes close to the pinch-off, leading to lower gm. This increases SVHEMT for a given SIch because SVHEMTSIch/gm2.

37.

In this simulation, we first examined fits to the data for the GaAs line with several sets of |A(f1)| and Te values to obtain r, SHEMTI, and SHEMTV as fit parameters, while Cin = 238 pF and Lin = 33 μH were fixed to give f1 = 1.794 MHz. Then, we examined fits to the data for the ATF line with fixed values of Te, r, and SIHEMT obtained from the former fit. Using this procedure, we found that only the parameters presented in Table I and r = 14.7 Ω explain our experimental data consistently within the error of ∼4%.

38.
M.
Reznikov
,
M.
Heiblum
,
H.
Shtrikman
, and
D.
Mahalu
, “
Temporal correlation of electrons: Suppression of shot noise in a ballistic quantum point contact
,”
Phys. Rev. Lett.
75
,
3340
(
1995
).
39.
A.
Kumar
,
L.
Saminadayar
,
D. C.
Glattli
,
Y.
Jin
, and
B.
Etienne
, “
Experimental test of the quantum shot noise reduction theory
,”
Phys. Rev. Lett.
76
,
2778
(
1996
).
40.
L.
DiCarlo
,
Y.
Zhang
,
D. T.
McClure
,
D. J.
Reilly
,
C. M.
Marcus
,
L. N.
Pfeiffer
, and
K. W.
West
, “
Shot-noise signatures of 0.7 structure and spin in a quantum point contact
,”
Phys. Rev. Lett.
97
,
036810
(
2006
).
41.
M.
Hashisaka
,
Y.
Yamauchi
,
S.
Nakamura
,
S.
Kasai
,
T.
Ono
, and
K.
Kobayashi
, “
Bolometric detection of quantum shot noise in coupled mesoscopic systems
,”
Phys. Rev. B
78
,
241303
(
2008
).
42.
T.
Muro
,
Y.
Nishihara
,
S.
Norimoto
,
M.
Ferrier
,
T.
Arakawa
,
K.
Kobayashi
,
T.
Ihn
,
C.
Rössler
,
K.
Ensslin
,
C.
Reichl
, and
W.
Wegscheider
, “
Finite shot noise and electron heating at quantized conductance in high-mobility quantum point contacts
,”
Phys. Rev. B
93
,
195411
(
2016
).
43.

The slight difference between the experimental data and the theoretical curve at G/G0 = 0.65 might be caused by nonlinear bias dependence of the QPC conductance.

You do not currently have access to this content.