We present in this paper a new design of a capacitive calibration kit for scanning microwave microscopy (SMM). As demonstrated by finite element modelings, the produced devices are highly independent of material parameters due to their lateral configuration. The fabrication of these gold-based structures is realized by using well established clean-room techniques. SMM measurements are performed under different conditions, and all capacitive structures exhibit a strong contrast with respect to the non-capacitive background. The obtained experimental data are employed to calibrate the used SMM tips and to extract the capacitance of produced devices following a method based on the short-open-load calibration algorithm for one-port vector network analyzers. The comparison of experimental capacitance and nominal values provided by our models proves the applicability of the used calibration approach for a wide frequency range.

1.
S. R.
Ekanayake
,
M. B.
Cortie
, and
M. J.
Ford
, “
Design of nanocapacitors and associated materials challenges
,”
Curr. Appl. Phys.
4
(
2
),
250
254
(
2004
), AMN-1 (First International Conference on Advanced Materials and Nanotechnology).
2.
E.
Sicard
, “
Introducing 10-nm FinFET technology in microwind
,” HAL Id hal-01558775,
2017
.
3.
Y.
Lu
, “
Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope
,”
Science
276
(
5321
),
2004
2006
(
1997
).
4.
M.
Kasper
,
G.
Gramse
,
J.
Hoffmann
,
C.
Gaquiere
,
R.
Feger
,
A.
Stelzer
,
J.
Smoliner
, and
F.
Kienberger
, “
Metal-oxide-semiconductor capacitors and Schottky diodes studied with scanning microwave microscopy at 18 GHz
,”
J. Appl. Phys.
116
(
18
),
184301
(
2014
).
5.
J.
Hoffmann
,
G.
Gramse
,
J.
Niegemann
,
M.
Zeier
, and
F.
Kienberger
, “
Measuring low loss dielectric substrates with scanning probe microscopes
,”
Appl. Phys. Lett.
105
(
1
),
013102
(
2014
).
6.
E. Y.
Ma
,
Y.-T.
Cui
,
K.
Ueda
,
S.
Tang
,
K.
Chen
,
N.
Tamura
,
P. M.
Wu
,
J.
Fujioka
,
Y.
Tokura
, and
Z.-X.
Shen
, “
Mobile metallic domain walls in an all-in-all-out magnetic insulator
,”
Science
350
(
6260
),
538
541
(
2015
).
7.
D.
Wu
,
X.
Li
,
L.
Luan
,
X.
Wu
,
W.
Li
,
M. N.
Yogeesh
,
R.
Ghosh
,
Z.
Chu
,
D.
Akinwande
,
Q.
Niu
, and
K.
Lai
, “
Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
31
),
8583
8588
(
2016
).
8.
A.
Buchter
,
J.
Hoffmann
,
A.
Delvallée
,
E.
Brinciotti
,
D.
Hapiuk
,
C.
Licitra
,
K.
Louarn
,
A.
Arnoult
,
G.
Almuneau
,
F.
Piquemal
,
M.
Zeier
, and
F.
Kienberger
, “
Scanning microwave microscopy applied to semiconducting GaAs structures
,”
Rev. Sci. Instrum.
89
(
2
),
023704
(
2018
).
9.
H. P.
Huber
,
M.
Moertelmaier
,
T. M.
Wallis
,
C. J.
Chiang
,
M.
Hochleitner
,
A.
Imtiaz
,
Y. J.
Oh
,
K.
Schilcher
,
M.
Dieudonne
,
J.
Smoliner
,
P.
Hinterdorfer
,
S. J.
Rosner
,
H.
Tanbakuchi
,
P.
Kabos
, and
F.
Kienberger
, “
Calibrated nanoscale capacitance measurements using a scanning microwave microscope
,”
Rev. Sci. Instrum.
81
(
11
),
113701
(
2010
).
10.
J.
Hoffmann
,
M.
Wollensack
,
M.
Zeier
,
J.
Niegemann
,
H.
Huber
, and
F.
Kienberger
, “
A calibration algorithm for nearfield scanning microwave microscopes
,” in
2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO)
(
IEEE
,
2012
), pp.
1
4
.
11.
T. L.
Quang
,
D.
Vasyukov
,
J.
Hoffmann
,
A.
Buchter
, and
M.
Zeier
, “
Fabrication and measurements of inductive devices for scanning microwave microscopy
,” in
2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO)
(
IEEE
,
2019
), pp.
429
432
.
12.
G.
Gramse
,
A.
Kölker
,
T.
Lim
,
T. J. Z.
Stock
,
H.
Solanki
,
S. R.
Schofield
,
E.
Brinciotti
,
G.
Aeppli
,
F.
Kienberger
, and
N. J.
Curson
, “
Nondestructive imaging of atomically thin nanostructures buried in silicon
,”
Sci. Adv.
3
(
6
),
e1602586
(
2017
).
13.
J. A.
Morán-Meza
,
A.
Delvallée
,
D.
Allal
, and
F.
Piquemal
, “
A substitution method for nanoscale capacitance calibration using scanning microwave microscopy
,”
Meas. Sci. Technol.
31
(
7
),
074009
(
2020
).
14.
J.-M.
Jin
,
The Finite Element Method in Electromagnetics
, 3rd ed. (
Wiley-IEEE Press
,
2014
).
15.
J.
Smajic
,
How to Perform Electromagnetic Finite Element Analysis
(
NAFEMS
,
2016
).
16.
A. C.
Gungor
,
M.
Celuch
,
J.
Smajic
,
M.
Olszewska-Placha
, and
J.
Leuthold
, “
Electromagnetic and semiconductor modeling of scanning microwave microscopy setups
,”
IEEE J. Multiscale Multiphys. Comput. Tech.
5
,
209
216
(
2020
).
17.
A. E.
Kaloyeros
,
Y.
Pan
,
J.
Goff
, and
B.
Arkles
, “
Review—Silicon nitride and silicon nitride-rich thin film technologies: State-of-the-art processing technologies, properties, and applications
,”
ECS J. Solid State Sci. Technol.
9
(
6
),
063006
(
2020
).

Supplementary Material

You do not currently have access to this content.