A capillary gas cell for laser wakefield acceleration was developed with the aid of three-dimensional computational fluid dynamics simulations. The gas cell was specially designed to provide upward density tapering in the longitudinal direction, which is expected to suppress the dephasing problem in laser wakefield acceleration by keeping the accelerated electrons in the acceleration phase of the wake wave. The density-tapered capillary gas cell was fabricated by sapphire plates, and its performance characteristics were tested. The capillary gas cell was filled with a few hundred millibars of hydrogen gas, and a Ti:sapphire laser pulse with a peak power of 3.8 TW and a pulse duration of 40 fs (full width at half maximum) was sent through the capillary hole, which has a length of 7 mm and a square cross section of 350 × 350 µm2. The laser-produced hydrogen plasma in the capillary hole was then diagnosed two-dimensionally by using a transverse Mach–Zehnder interferometer. The capillary gas cell was found to provide an upward plasma density tapering in the range of 1018 cm−3–1019 cm−3, which has a potential to enhance the electron beam energy in laser wakefield acceleration experiments.

1.
T.
Tajima
and
J. M.
Dawson
, “
Laser electron accelerator
,”
Phys. Rev. Lett.
43
,
267
270
(
1979
).
2.
H.-P.
Schlenvoigt
,
K.
Haupt
,
A.
Debus
,
F.
Budde
,
O.
Jäckel
,
S.
Pfotenhauer
,
H.
Schwoerer
,
E.
Rohwer
,
J. G.
Gallacher
,
E.
Brunetti
,
R. P.
Shanks
,
S. M.
Wiggins
, and
D. A.
Jaroszynski
, “
A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator
,”
Nat. Phys.
4
,
130
133
(
2008
).
3.
N. D.
Powers
,
I.
Ghebregziabher
,
G.
Golovin
,
C.
Liu
,
S.
Chen
,
S.
Banerjee
,
J.
Zhang
, and
D. P.
Umstadter
, “
Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source
,”
Nat. Photonics
8
,
28
31
(
2013
).
4.
S.
Lee
,
H. S.
Uhm
,
T. Y.
Kang
,
M. S.
Hur
, and
H.
Suk
, “
Enhanced betatron radiation by a modulating laser pulse in laser wakefield acceleration
,”
Curr. Appl. Phys.
19
,
464
469
(
2019
).
5.
K.
Schmid
and
L.
Veisz
, “
Supersonic gas jets for laser-plasma experiments
,”
Rev. Sci. Instrum.
83
,
053304
(
2012
).
6.
A.
Döpp
,
E.
Guillaume
,
C.
Thaury
,
J.
Gautier
,
K.
Ta Phuoc
, and
V.
Malka
, “
3D printing of gas jet nozzles for laser-plasma accelerators
,”
Rev. Sci. Instrum.
87
,
073505
(
2016
).
7.
S.
Lorenz
,
G.
Grittani
,
E.
Chacon-Golcher
,
C. M.
Lazzarini
,
J.
Limpouch
,
F.
Nawaz
,
M.
Nevrkla
,
L.
Vilanova
, and
T.
Levato
, “
Characterization of supersonic and subsonic gas targets for laser wakefield electron acceleration experiments
,”
Matter Radiat. Extremes
4
,
015401
(
2019
).
8.
W. P.
Leemans
,
B.
Nagler
,
A. J.
Gonsalves
,
C.
Tóth
,
K.
Nakamura
,
C. G. R.
Geddes
,
E.
Esarey
,
C. B.
Schroeder
, and
S. M.
Hooker
, “
GeV electron beams from a centimetre-scale accelerator
,”
Nat. Phys.
2
,
696
699
(
2006
).
9.
S.
Abuazoum
,
S. M.
Wiggins
,
B.
Ersfeld
,
K.
Hart
,
G.
Vieux
,
X.
Yang
,
G. H.
Welsh
,
R. C.
Issac
,
M. P.
Reijnders
,
D. R.
Jones
, and
D. A.
Jaroszynski
, “
Linearly tapered discharge capillary waveguides as a medium for a laser plasma wakefield accelerator
,”
Appl. Phys. Lett.
100
,
014106
(
2012
).
10.
F.
Filippi
,
M. P.
Anania
,
A.
Biagioni
,
E.
Brentegani
,
E.
Chiadroni
,
A.
Cianchi
,
A.
Deng
,
M.
Ferrario
,
R.
Pompili
,
J.
Rosenzweig
, and
A.
Zigler
, “
Tapering of plasma density ramp profiles for adiabatic lens experiments
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
909
,
339
342
(
2018
).
11.
M. S.
Kim
,
D. G.
Jang
,
T. H.
Lee
,
I. H.
Nam
,
I. W.
Lee
, and
H.
Suk
, “
Characteristics of a tapered capillary plasma waveguide for laser wakefield acceleration
,”
Appl. Phys. Lett.
102
,
204103
(
2013
).
12.
C. E.
Clayton
,
J. E.
Ralph
,
F.
Albert
,
R. A.
Fonseca
,
S. H.
Glenzer
,
C.
Joshi
,
W.
Lu
,
K. A.
Marsh
,
S. F.
Martins
,
W. B.
Mori
,
A.
Pak
,
F. S.
Tsung
,
B. B.
Pollock
,
J. S.
Ross
,
L. O.
Silva
, and
D. H.
Froula
, “
Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection
,”
Phys. Rev. Lett.
105
,
105003
(
2010
).
13.
J.
Osterhoff
,
A.
Popp
,
Zs.
Major
,
B.
Marx
,
T. P.
Rowlands-Rees
,
M.
Fuchs
,
M.
Geissler
,
R.
Ho¨rlein
,
B.
Hidding
,
S.
Becker
,
E. A.
Peralta
,
U.
Schramm
,
F.
Gru¨ner
,
D.
Habs
,
F.
Krausz
,
S. M.
Hooker
, and
S.
Karsch
, “
Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell
,”
Phys. Rev. Lett.
101
,
085002
(
2008
).
14.
K.
Nakamura
,
B.
Nagler
,
C.
Tóth
,
C. G. R.
Geddes
,
C. B.
Schroeder
,
E.
Esarey
,
W. P.
Leemans
,
A. J.
Gonsalves
, and
S. M.
Hooker
, “
GeV electron beams from a centimeter-scale channel guided laser wakefield accelerator
,”
Phys. Plasmas
14
,
056708
(
2007
).
15.
S.
Karsch
,
J.
Osterhoff
,
A.
Popp
,
T. P.
Rowlands-Rees
,
Z.
Major
,
M.
Fuchs
,
B.
Marx
,
R.
Hörlein
,
K.
Schmid
,
L.
Veisz
,
S.
Becker
,
U.
Schramm
,
B.
Hidding
,
G.
Pretzler
,
D.
Habs
,
F.
Grüner
,
F.
Krausz
, and
S. M.
Hooker
, “
GeV-scale electron acceleration in a gas-filled capillary discharge waveguide
,”
New J. Phys.
9
,
415
(
2007
).
16.
M.
Hansson
,
L.
Senje
,
A.
Persson
,
O.
Lundh
,
C.-G.
Wahlström
,
F. G.
Desforges
,
J.
Ju
,
T. L.
Audet
,
B.
Cros
,
S. D.
Dufrénoy
, and
P.
Monot
, “
Enhanced stability of laser wakefield acceleration using dielectric capillary tubes
,”
Phys. Rev. Spec. Top.–Accel. Beams
17
,
031303
(
2014
).
17.
S.
Kuschel
,
M. B.
Schwab
,
M.
Yeung
,
D.
Hollatz
,
A.
Seidel
,
W.
Ziegler
,
A.
Sävert
,
M. C.
Kaluza
, and
M.
Zepf
, “
Controlling the self-injection threshold in laser wakefield accelerators
,”
Phys. Rev. Lett.
121
,
154801
(
2018
).
18.
A. J.
Gonsalves
,
K.
Nakamura
,
C.
Benedetti
,
C. V.
Pieronek
,
S.
Steinke
,
J. H.
Bin
,
S. S.
Bulanov
,
J.
van Tilborg
,
C. G. R.
Geddes
,
C. B.
Schroeder
,
J.
Daniels
,
C.
Tóth
,
L.
Obst-Huebl
,
R. G. W.
van den Berg
,
G.
Bagdasarov
,
N.
Bobrova
,
V.
Gasilov
,
G.
Korn
,
P.
Sasorov
,
W. P.
Leemans
, and
E.
Esarey
, “
Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV
,”
Phys. Plasmas
27
,
053102
(
2020
).
19.
T. G.
Jones
,
A.
Ting
,
D.
Kaganovich
,
C. I.
Moore
, and
P.
Sprangle
, “
Spatially resolved interferometric measurement of a discharge capillary plasma channel
,”
Phys. Plasmas
10
,
4504
(
2003
).
20.
A. J.
Gonsalves
,
T. P.
Rowlands-Rees
,
B. H. P.
Broks
,
J. J. A. M.
van der Mullen
, and
S. M.
Hooker
, “
Transverse interferometry of a hydrogen-filled capillary discharge waveguide
,”
Phys. Rev. Lett.
98
,
025002
(
2007
).
21.
G.
Golovin
,
S.
Banerjee
,
S.
Chen
,
N.
Powers
,
C.
Liu
,
W.
Yan
,
J.
Zhang
,
B.
Zhao
, and
D.
Umstadter
, “
Control and optimization of a staged laser-wakefield accelerator
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
830
,
375
380
(
2016
).
22.
S.
Steinke
,
J.
van Tilborg
,
C.
Benedetti
,
C. G. R.
Geddes
,
C. B.
Schroeder
,
J.
Daniels
,
K. K.
Swanson
,
A. J.
Gonsalves
,
K.
Nakamura
,
N. H.
Matlis
,
B. H.
Shaw
,
E.
Esarey
, and
W. P.
Leemans
, “
Multistage coupling of independent laser-plasma accelerators
,”
Nature
530
,
190
193
(
2016
).
23.
M. S.
Hur
and
H.
Suk
, “
Numerical study of 1.1 GeV electron acceleration over a-few-millimeter-long plasma with a tapered density
,”
Phys. Plasmas
18
,
033102
(
2011
).
24.
W.
Rittershofer
,
C. B.
Schroeder
,
E.
Esarey
,
F. J.
Grüner
, and
W. P.
Leemans
, “
Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators
,”
Phys. Plasmas
17
,
063104
(
2010
).
25.
Z.
Jin
,
H.
Nakamura
,
N.
Pathak
,
Y.
Sakai
,
A.
Zhidkov
,
K.
Sueda
,
R.
Kodama
, and
T.
Hosokai
, “
Coupling effects in multistage laser wake-field acceleration of electrons
,”
Sci. Rep.
9
,
20045
(
2019
).
26.
See https://www.ansys.com/ko-kr/academic/free-student-products for information about the Ansys Student version..
27.
See http://www.comatechnology.com/kr/index.php for information about Coma Technology Co..
28.
I.
Nam
,
M.
Kim
,
T. H.
Lee
,
S. W.
Lee
, and
H.
Suk
, “
Highly-efficient 20 TW Ti:sapphire laser system using optimized diverging beams for laser wakefield acceleration experiments
,”
Curr. Appl. Phys.
15
,
468
472
(
2015
).
29.
S.
Augst
,
D. D.
Meyerhofer
,
D.
Strickland
, and
S. L.
Chint
, “
Laser ionization of noble gases by Coulomb-barrier suppression
,”
J. Opt. Soc. Am. B
8
,
858
867
(
1991
).
30.
F.
Keilmann
, “
An infrared Schlieren interferometer for measuring electron density profiles
,”
Plasma Phys.
14
,
111
122
(
1972
).
31.
C. M.
Vest
, “
Interferometry of strongly refracting axisymmetric phase objects
,”
Appl. Opt.
14
,
1601
1606
(
1975
).
32.
E.
Hecht
,
Optics
(
Addison-Wesley
,
Boston
,
2001
), Chap. 7.
33.
E.
Esarey
,
C. B.
Schroeder
, and
W. P.
Leemans
, “
Physics of laser-driven plasma-based electron accelerators
,”
Rev. Mod. Phys.
81
,
1229
1285
(
2009
).
34.
J.
Faure
,
V.
Malka
,
J.-R.
Marquès
,
P.-G.
David
,
F.
Amiranoff
,
K.
Ta Phuoc
, and
A.
Rousse
, “
Effects of pulse duration on self-focusing of ultra-short lasers in underdense plasmas
,”
Phys. Plasmas
9
,
756
759
(
2002
).
35.
T. D.
Arber
,
K.
Bennett
,
C. S.
Brady
,
A.
Lawrence-Douglas
,
M. G.
Ramsay
,
N. J.
Sircombe
,
P.
Gillies
,
R. G.
Evans
,
H.
Schmitz
,
A. R.
Bell
, and
C. P.
Ridgers
, “
Contemporary particle-in-cell approach to laser-plasma modelling
,”
Plasma Phys. Controlled Fusion
57
,
113001
(
2015
).
36.
P.
Gibbon
,
Short Pulse Laser Interactions with Matter
(
World Scientific
,
Singapore
,
2005
), Chap. 2, pp.
24
27
.
You do not currently have access to this content.