Compressional waves in saturated porous media are relevant to many fields from oil exploration to diagnostic of human cancellous bone and can be used to interpret physical behaviors of materials. In this work, based on Biot’s theory in the low frequency range, a key finding is that there exists a critical frequency of Biot’s theory in the low frequency range, which determines the coincidence of the properties of Biot waves of the first and second kinds. Furthermore, we have investigated the dispersion and attenuation of the coalescence of the first and second compressional waves in the low frequency range. The coalescence of the first and second waves is strongly attenuated with a moderate phase velocity and shows the in-phase feature. In addition, acoustic wave propagation has been calculated numerically using the space–time conservation element and solution element (CESE) method. The CESE-simulated results are compared to the experimental data and to those of the classical transfer function approach. We show that the CESE scheme preserves the local and global flux conservations in the solution procedure of Biot’s theory. It is found that the CESE method provides more accurate predictions of high dispersion and strong attenuation of compressional waves in the low frequency range and is well suitable for predicting compressional wave fields in saturated porous media.

1.
S.
Minato
and
R.
Ghose
,
J. Appl. Phys.
121
(
10
),
104902
(
2017
).
2.
X.
Lei
,
G.
Yu
,
S.
Ma
,
X.
Wen
, and
Q.
Wang
,
J. Geophys. Res.: Solid Earth
113
(
B10
),
B10310
, (
2008
).
3.
4.
M.
Viti
,
Tectonics
38
(
6
),
1931
, (
2019
).
5.
N. M.
Shapiro
,
D. V.
Droznin
,
S. Y.
Droznina
,
S. L.
Senyukov
,
A. A.
Gusev
, and
E. I.
Gordeev
,
Nat. Geosci.
10
(
6
),
442
(
2017
).
6.
M. A.
Biot
,
J. Acoust. Soc. Am.
28
(
2
),
179
(
1956
).
7.
J. G. M.
Van Der Grinten
,
M. E. H.
Van Dongen
, and
H.
Van Der Kogel
,
J. Appl. Phys.
58
(
8
),
2937
(
1985
).
8.
J. G. M.
Van Der Grinten
,
M. E. H.
Van Dongen
, and
H.
Van Der Kogel
,
J. Appl. Phys.
62
(
12
),
4682
(
1987
).
9.
S. K.
Garg
and
A. H.
Nayfeh
,
J. Appl. Phys.
60
(
9
),
3045
(
1986
).
10.
J. X.
Li
,
R.
Rezaee
,
T. M.
Müller
, and
M.
Sarmadivaleh
,
APPEA J.
60
(
1
),
315
(
2020
).
11.
V.
Kazemi-Kamyab
,
K.
Subramaniam
, and
Y.
Andreopoulos
,
J. Appl. Phys.
109
(
1
),
013523
(
2011
).
12.
W. C.
Lo
,
G.
Sposito
, and
E.
Majer
,
Water Resour. Res.
41
(
2
),
WO2025
, (
2005
).
13.
R. F.
Ganiev
,
S. A.
Petrov
, and
L. E.
Ukrainskii
,
Fluid Dyn.
27
(
1
),
55
(
1992
).
14.
D. G.
Albert
,
J. Appl. Phys.
73
(
1
),
28
(
1993
).
15.
I. Y.
Édel’Man
,
Fluid Dyn.
31
(
4
),
552
(
1996
).
16.
L. H.
Tong
,
Y. S.
Liu
,
D. X.
Geng
, and
S. K.
Lai
,
J. Acoust. Soc. Am.
142
(
2
),
756
770
(
2017
).
17.
Z. E. A.
Fellah
and
C.
Depollier
,
J. Acoust. Soc. Am.
107
(
2
),
683
(
2000
).
18.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
,
J. Fluid Mech.
176
,
379
(
1987
).
19.
D.
Yang
and
Z.
Zhang
,
Wave Motion
35
(
3
),
223
(
2002
).
20.
N.
Sebaa
,
Z. E. A.
Fellah
,
M.
Fellah
,
W.
Lauriks
, and
C.
Depollier
,
J. Appl. Phys.
98
(
8
),
084901
(
2005
).
21.
M.
Fellah
,
Z. E. A.
Fellah
,
F. G.
Mitri
,
E.
Ogam
, and
C.
Depollier
,
J. Acoust. Soc. Am.
133
(
4
),
1867
(
2013
).
22.
T.
Müller
and
P.
Sahay
,
Appl. Phys. Lett.
98
(
8
),
084101
(
2011
).
23.
E.
Ogam
and
Z. E. A.
Fellah
,
J. Appl. Phys.
116
(
6
),
063503
(
2014
).
24.
B.
Gurevich
,
Appl. Phys. Lett.
91
(
9
),
091919
(
2007
).
25.
P. S.
Kurzeja
and
H.
Steeb
,
J. Acoust. Soc. Am.
131
(
6
),
EL454
(
2012
).
26.
D. N.
Mikhailov
,
Fluid Dyn.
41
(
1
),
112
(
2006
).
27.
L.
Zhang
,
J.
Ba
,
L.
Fu
,
J. M.
Carcione
, and
C.
Cao
,
Int. J. Rock Mech. Min. Sci.
113
,
24
(
2019
).
28.
H.
Yin
,
J.
Zhao
,
G.
Tang
,
L.
Zhao
,
X.
Ma
, and
S.
Wang
,
J. Geophys. Res.: Solid Earth
122
(
11
),
8925
, (
2017
).
29.
K. A.
Wear
,
A.
Laib
,
A. P.
Stuber
, and
J. C.
Reynolds
,
J. Acoust. Soc. Am.
117
(
5
),
3319
3324
(
2005
).
30.
N. P.
Chotiros
,
J. Acoust. Soc. Am.
144
(
3
),
1980
(
2018
).
31.
B.
Zhang
,
D.
Yang
,
Y.
Cheng
, and
Y.
Zhang
,
Sci. Bull.
64
(
17
),
1246
(
2019
).
32.
J.
Yang
,
D.
Yang
,
H.
Han
,
L.
Qiu
, and
Y.
Cheng
,
Sci. China: Earth Sci.
64
(
3
),
364
(
2021
).
33.
S. Z.
Dunin
,
D. N.
Mikhailov
, and
V. N.
Nikolayevskii
,
J. Appl. Math. Mech.
70
(
2
),
251
(
2006
).
34.
L.
De Ryck
,
J.-P.
Groby
,
P.
Leclaire
,
W.
Lauriks
,
A.
Wirgin
,
Z. E. A.
Fellah
, and
C.
Depollier
,
Appl. Phys. Lett.
90
(
18
),
181901
(
2007
).
35.
D.
Yang
,
G.
Song
, and
M.
Lu
,
Bull. Seismol. Soc. Am.
97
(
5
),
1557
(
2007
).
36.
X.
Liu
,
M.
Duan
,
M.
Liu
,
F.
Xin
, and
C.
Zhang
,
J. Appl. Phys.
129
(
19
),
195103
(
2021
).
37.
L.
De Ryck
,
W.
Lauriks
,
Z. E. A.
Fellah
,
A.
Wirgin
,
J. P.
Groby
,
P.
Leclaire
, and
C.
Depollier
,
J. Appl. Phys.
102
(
2
),
024910
(
2007
).
38.
J.
Zhang
,
D.
Yang
,
X.
He
, and
X.
Ma
,
Chin. J. Geophys.
61
(
3
),
926
(
2018
).
39.
S.-C.
Chang
,
J. Comput. Phys.
119
(
2
),
295
(
1995
).
40.
D.-X.
Yang
,
AIP Adv.
10
(
5
),
055116
(
2020
).
41.
Y.-Y.
Chen
,
L.
Yang
, and
S.-T. J.
Yu
,
Wave Motion
48
(
1
),
39
(
2011
).
42.
D.
Yang
,
M.
Doschoris
, and
L.
Zhang
,
J. Appl. Phys.
124
(
7
),
074902
(
2018
).
43.
R.
Panneton
,
J. Acoust. Soc. Am.
145
(
5
),
EL367
(
2019
).
44.
T. M.
Mueller
and
P. N.
Sahay
,
J. Acoust. Soc. Am.
130
(
4
),
2437
(
2011
).
45.
Z. E. A.
Fellah
,
A.
Wirgin
,
M.
Fellah
,
N.
Sebaa
,
C.
Depollier
, and
W.
Lauriks
,
J. Acoust. Soc. Am.
118
(
2
),
661
(
2005
).
46.
D.
Kalisman
,
S.
Sorek
,
A.
Yakirevich
, and
T.
Kamai
,
Vadose Zone J.
18
(
1
),
190067
(
2019
).
47.
T. M.
Müller
and
P. N.
Sahay
,
J. Acoust. Soc. Am.
129
(
5
),
2785
(
2011
).
48.
P.
Xie
and
D.
Yang
,
Chin. J. Geophys.
61
(
3
),
917
(
2018
).
49.
D.
He-Fei
,
H.
Tao
, and
Z.
De-Liang
,
Chin. Phys. Lett.
28
(
3
),
030203
(
2011
).
50.
H.
Shen
,
C.-Y.
Wen
,
M.
Parsani
, and
C.-W.
Shu
,
J. Comput. Phys.
330
,
668
(
2017
).
51.
Y.
Jiang
,
C.-Y.
Wen
, and
D.
Zhang
,
AIAA J.
58
(
12
),
5408
(
2020
).
52.
A. D.
Pierce
,
W. M.
Carey
,
J. F.
Lynch
, and
M.
Zampolli
,
J. Acoust. Soc. Am.
115
(
5
),
2400
(
2004
).
53.
D. A.
Gubaidullin
and
Y. V.
Fedorov
,
Fluid Dyn.
52
(
1
),
107
(
2017
).
54.
F. J.
Carrillo
and
I. C.
Bourg
,
Water Resour. Res.
55
(
10
),
8096
, (
2019
).
55.
D.
Yang
,
Z.
Xue
, and
S. A.
Mathias
,
Transp. Porous Media
92
(
1
),
101
(
2012
).
56.
L.
Wang
,
W.-W.
Wang
,
Y.
Cai
,
D.
Liu
, and
F.-Y.
Zhao
,
Transp. Porous Media
132
(
3
),
495
(
2020
).
57.
M.
Fariñas
,
D.
Sancho-Knapik
,
J.
Peguero-Pina
,
E.
Gil-Pelegrín
, and
T.
Gómez Álvarez-Arenas
,
Appl. Phys. Lett.
102
(
10
),
103702
(
2013
).
58.
C.
Morency
and
J.
Tromp
,
Geophys. J. Int.
175
(
1
),
301
(
2008
).
59.
S. V.
Kirilovskiy
,
A. A.
Maslov
,
S. G.
Mironov
, and
T. V.
Poplavskaya
,
Fluid Dyn.
53
(
3
),
409
(
2018
).
60.
W. D.
Turley
,
B. M.
La Lone
,
J. G.
Mance
,
M. D.
Staska
,
G. D.
Stevens
,
L. R.
Veeser
, and
D. M.
Dattelbaum
,
J. Appl. Phys.
129
(
14
),
145102
(
2021
).
61.
B.
Quintal
,
M.
Frehner
,
C.
Madonna
,
N.
Tisato
,
M.
Kuteynikova
, and
E. H.
Saenger
,
Leading Edge
30
(
12
),
1360
(
2011
).
You do not currently have access to this content.