A deterministic processing method is a high-precision finishing method, where the to-be-removed amount of material at each point of the work surface is calculated based on an accurately measured present surface shape and is removed precisely using a numerically controlled (NC) processing system. Although this method has achieved nanometer-scale accuracy, the method requires considerable time to scan the work surface, leading to low productivity. Therefore, using an individual on–off controllable array-type plasma generator covering the entire work surface, enabling simultaneous NC plasma processing is proposed herein. A novel intermittent gas flow system was constructed using cyclic on–off control of the gas supply and exhaust valves instead of the commonly used continuous gas flow to achieve uniform in-plane plasma etching. It was found that uniform removal could be achieved by combining it with a pulse-modulated high-frequency power supply and setting the plasma generation time in one cycle to be sufficiently short. Furthermore, a power control approach was developed for maintaining a constant plasma state, even while varying the plasma-generating array elements, which resulted in a demonstration experiment of NC plasma etching that successfully reduced the thickness variation of a silicon substrate.

1.
C. C. W.
Ruppel
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
64
,
1390
1400
(
2017
).
2.
T.
Shoki
,
M.
Mitsui
,
M.
Sakamoto
,
N.
Sakaya
,
M.
Ootsuka
,
T.
Asakawa
,
T.
Yamada
, and
H.
Mitsui
,
Proc. SPIE
7636
,
76360U
(
2010
).
3.
M.
Yabashi
and
H.
Tanaka
,
Nat. Phys.
11
,
12
14
(
2017
).
4.
K.
Somiya
,
E.
Hirose
, and
Y.
Michimura
,
Phys. Rev. D
100
,
082005
(
2019
).
5.
M.
Krishnan
,
J. W.
Nalaskowski
, and
L. M.
Cook
,
Chem. Rev.
110
,
178
204
(
2010
).
6.
H.
Aida
,
T.
Doi
,
H.
Takeda
,
H.
Katakura
,
S.-W.
Kim
,
K.
Koyama
,
T.
Yamazaki
, and
M.
Uneda
,
Curr. Appl. Phys.
12
,
S41
S46
(
2012
).
7.
Y.
Mori
,
K.
Yamauchi
, and
K.
Endo
,
Precis. Eng.
9
,
123
128
(
1987
).
8.
L. D.
Bollinger
,
G. M.
Gallatin
,
J.
Samuels
,
G.
Steinberg
, and
C. B.
Zarowin
,
Proc. SPIE
1333
,
44
(
1990
).
9.
Y.
Mori
,
K.
Yamauchi
,
K.
Yamamura
, and
Y.
Sano
,
Rev. Sci. Instrum.
71
,
4627
(
2000
).
10.
Y.
Mori
,
K.
Yamamura
, and
Y.
Sano
,
Rev. Sci. Instrum.
71
,
4620
(
2000
).
11.
Y.
Sano
,
K.
Yamamura
,
H.
Mimura
,
K.
Yamauchi
, and
Y.
Mori
,
Rev. Sci. Instrum.
78
,
086102
(
2007
).
12.
C.
Maloney
,
J. P.
Lormeau
, and
P.
Dumas
,
Proc. SPIE
10009
,
100090R
(
2016
).
13.
T.
Franz
and
T.
Hänsel
,
Proc. SPIE
7655
,
765513
(
2010
).
14.
T.
Arnold
,
G.
Böhm
, and
H.
Paetzelt
,
Contrib. Plasma Phys.
54
,
145
154
(
2014
).
15.
J.
Meister
and
T.
Arnold
,
Plasma Chem. Plasma Process.
31
,
91
107
(
2011
).
16.
I.
Yamada
,
J.
Matsuo
,
N.
Toyoda
, and
A.
Kirkpatrick
,
Mater Sci. Eng.: R
34
,
231
295
(
2001
).
17.
J. O.
Chu
,
L. P.
Allen
,
W.
Skinner
,
J.
Hautala
,
T. G.
Tetreault
,
R.
MacCrimmon
,
C.
Santeufemio
,
E.
Degenkolb
, and
D. B.
Fenner
, in
2003 IEEE International Conference on SOI
(
IEEE
,
2003
), pp.
46
47
.
18.
Y.
Sano
,
T.
Masuda
,
H.
Mimura
, and
K.
Yamauchi
,
J. Cryst. Growth
310
,
2173
2177
(
2008
).
19.
W.
Natsu
,
S.
Ooshiro
, and
M.
Kunieda
,
CIRP J. Manuf. Sci. Technol.
1
,
27
34
(
2008
).
20.
S.
Matsuyama
,
N.
Kidani
,
H.
Mimura
,
J.
Kim
,
Y.
Sano
,
K.
Tamasaku
,
Y.
Kohmura
,
M.
Yabashi
,
T.
Ishikawa
, and
K.
Yamauchi
,
Proc. SPIE
8139
,
813905
(
2011
).
21.
Y.
Sano
,
T.
Masuda
,
S.
Kamisaka
,
H.
Mimura
,
S.
Matsuyama
, and
K.
Yamauchi
, in
IEEE International SOI Conference
(
IEEE
,
2008
), pp.
165
166
.
22.
H.
Takino
,
N.
Shibata
,
H.
Itoh
,
T.
Kobayashi
,
K.
Yamamura
,
Y.
Sano
, and
Y.
Mori
,
Appl. Opt.
41
,
3971
3977
(
2002
).
23.
H.
Takei
,
K.
Yoshinaga
,
K.
Matsuyama
,
S.
Yamauchi
, and
Y.
Sano
,
Jpn. J. Appl. Phys., Part 1
54
,
01AE03
(
2015
).
24.
H.
Takei
,
S.
Kurio
,
S.
Matsuyama
,
K.
Yamauchi
, and
Y.
Sano
,
Rev. Sci. Instrum.
87
,
105121
(
2016
).
You do not currently have access to this content.