The limited control over the printing process in commercial powder bed 3D printers hinders the exploration of novel materials and applications. In this study, a custom binder-jetting 3D printer was developed. The resulting fine-grained control over the printing process enables features such as voxel-based control over the printed ink volume, adaptive layer thickness, and selective multi-pass printing. A protocol was developed to optimize the 3D printing process for new build materials and binders, in which resolution tests were used as a guideline for improving the dimensional accuracy. As a demonstration of the voxel-based control over the printing process, a functionally graded object was printed.
REFERENCES
1.
M. J.
Harding
, S.
Brady
, H.
O’Connor
, R.
Lopez-Rodriguez
, M. D.
Edwards
, S.
Tracy
, D.
Dowling
, G.
Gibson
, K. P.
Girard
, and S.
Ferguson
, “3D printing of PEEK reactors for flow chemistry and continuous chemical processing
,” React. Chem. Eng.
5
, 728
–735
(2020
).2.
W.
Su
, B. S.
Cook
, Y.
Fang
, and M. M.
Tentzeris
, “Fully inkjet-printed microfluidics: A solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications
,” Sci. Rep.
6
, 035111
(2016
).3.
H.
Gong
, A. T.
Woolley
, and G. P.
Nordin
, “3D printed high density, reversible, chip-to-chip microfluidic interconnects
,” Lab Chip
18
, 639
–647
(2018
).4.
A. K.
Au
, W.
Lee
, and A.
Folch
, “Mail-order microfluidics: Evaluation of stereolithography for the production of microfluidic devices
,” Lab Chip
14
, 1294
–1301
(2014
).5.
S.
Waheed
, J. M.
Cabot
, N. P.
Macdonald
, T.
Lewis
, R. M.
Guijt
, B.
Paull
, and M. C.
Breadmore
, “3D printed microfluidic devices: Enablers and barriers
,” Lab Chip
16
, 1993
–2013
(2016
).6.
B.
Zhang
, X.
Pei
, P.
Song
, H.
Sun
, H.
Li
, Y.
Fan
, Q.
Jiang
, C.
Zhou
, and X.
Zhang
, “Porous bioceramics produced by inkjet 3D printing: Effect of printing ink formulation on the ceramic macro and micro porous architectures control
,” Composites, Part B
155
, 112
–121
(2018
).7.
M. J.
Zafar
, D.
Zhu
, and Z.
Zhang
, “3D printing of bioceramics for bone tissue engineering
,” Materials
12
, 3361
(2019
).8.
H.
Ma
, C.
Feng
, J.
Chang
, and C.
Wu
, “3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy
,” Acta Biomater.
79
, 37
–59
(2018
).9.
K. K.
Mallick
and J.
Winnett
, Bone Substitute Biomaterials
(Woodhead Publishing
, Cambridge
, 2014
), pp. 118
–141
.10.
A.
Lind
, Ø.
Vistad
, M. F.
Sunding
, K. A.
Andreassen
, J. H.
Cavka
, and C. A.
Grande
, “Multi-purpose structured catalysts designed and manufactured by 3D printing
,” Mater. Des.
187
, 108377
(2020
).11.
X.
Zhou
and C. J.
Liu
, “Three-dimensional printing for catalytic applications: Current status and perspectives
,” Adv. Funct. Mater.
27
, 1701134
(2017
).12.
V.
Saggiomo
, in Catalyst Immobilization
, edited by M.
Benaglia
and A.
Puglisi
(Wiley VCH
, Weinheim
, 2019
), pp. 369
–408
.13.
H.
Maleki
and V.
Bertola
, “Recent advances and prospects of inkjet printing in heterogeneous catalysis
,” Catal.: Sci. Technol.
10
, 3140
–3159
(2020
).14.
C.
Parra-Cabrera
, C.
Achille
, S.
Kuhn
, and R.
Ameloot
, “3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors
,” Chem. Soc. Rev.
47
, 209
–230
(2018
).15.
C.
Hurt
, M.
Brandt
, S. S.
Priya
, T.
Bhatelia
, J.
Patel
, P.
Selvakannan
, and S.
Bhargava
, “Combining additive manufacturing and catalysis: A review
,” Catal.: Sci. Technol.
7
, 3421
–3439
(2017
).16.
J.
Hoerber
, J.
Glasschroeder
, M.
Pfeffer
, J.
Schilp
, M.
Zaeh
, and J.
Franke
, “Approaches for additive manufacturing of 3D electronic applications
,” Procedia CIRP
17
, 806
–811
(2014
).17.
H. W.
Tan
, J.
An
, C. K.
Chua
, and T.
Tran
, “Metallic nanoparticle inks for 3D printing of electronics
,” Adv. Electron. Mater.
5
, 1800831
(2019
).18.
X.
Lu
, T.
Zhao
, X.
Ji
, J.
Hu
, T.
Li
, X.
Lin
, and W.
Huang
, “3D printing well organized porous iron-nickel/polyaniline nanocages multiscale supercapacitor
,” J. Alloys Compd.
760
, 78
–83
(2018
).19.
Z.
Sun
and L. F.
Velásquez–García
, “Miniature, 3D-printed, monolithic arrays of corona ionizers
,” J. Phys.: Conf. Ser.
1407
, 012065
(2019
).20.
S. Y.
Jun
, B.
Sanz-Izquierdo
, E. A.
Parker
, D.
Bird
, and A.
McClelland
, “Manufacturing considerations in the 3-D printing of fractal antennas
,” IEEE Trans. Compon., Packag., Manuf. Technol.
7
, 1891
–1898
(2017
).21.
L. A.
Chavez
, B. R.
Wilburn
, P.
Ibave
, L. C.
Delfin
, S.
Vargas
, H.
Diaz
, C.
Fulgentes
, A.
Renteria
, J.
Regis
, Y.
Liu
, R. B.
Wicker
, and Y.
Lin
, “Fabrication and characterization of 3D printing induced orthotropic functional ceramics
,” Smart Mater. Struct.
28
, 125007
(2019
).22.
P.
Yang
and H. J.
Fan
, “Inkjet and extrusion printing for electrochemical energy storage: A minireview
,” Adv. Mater. Technol.
5
, 2000217
(2020
).23.
S. C.
Ligon
, R.
Liska
, J.
Stampfl
, M.
Gurr
, and R.
Mülhaupt
, “Polymers for 3D printing and customized additive manufacturing
,” Chem. Rev.
117
, 10212
–10290
(2017
).24.
J.-Y.
Lee
, J.
An
, and C. K.
Chua
, “Fundamentals and applications of 3D printing for novel materials
,” Appl. Mater. Today
7
, 120
–133
(2017
).25.
A.
Mostafaei
, A. M.
Elliott
, J. E.
Barnes
, F.
Li
, W.
Tan
, C. L.
Cramer
, P.
Nandwana
, and M.
Chmielus
, “Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges
,” Prog. Mater. Sci.
119
, 100707
(2021
).26.
L. C.
Hwa
, S.
Rajoo
, A. M.
Noor
, N.
Ahmad
, and M. B.
Uday
, “Recent advances in 3D printing of porous ceramics: A review
,” Curr. Opin. Solid State Mater. Sci.
21
, 323
–347
(2017
).27.
G. K.
Meenashisundaram
, Z.
Xu
, M. L. S.
Nai
, S.
Lu
, J. S.
Ten
, and J.
Wei
, “Binder jetting additive manufacturing of high porosity 316L stainless steel metal foams
,” Materials
13
, 3744
(2020
).28.
X.
Lv
, F.
Ye
, L.
Cheng
, S.
Fan
, and Y.
Liu
, “Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment
,” Ceram. Int.
45
, 12609
–12624
(2019
).29.
M.
Ziaee
and N. B.
Crane
, “Binder jetting: A review of process, materials, and methods
,” Addit. Manuf.
28
, 781
–801
(2019
).30.
T.
Sivarupan
, N.
Balasubramani
, P.
Saxena
, D.
Nagarajan
, M.
El Mansori
, K.
Salonitis
, M.
Jolly
, and M. S.
Dargusch
, “A review on the progress and challenges of binder jet 3D printing of sand moulds for advanced casting
,” Addit. Manuf.
40
, 101889
(2021
).31.
M.
Morbidelli
, A.
Gavriilidis
, and A.
Varma
, Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes
(Cambridge University Press
, Cambridge
, 2001
).32.
C.
Bader
, D.
Kolb
, J. C.
Weaver
, S.
Sharma
, A.
Hosny
, J.
Costa
, and N.
Oxman
, “Making data matter: Voxel printing for the digital fabrication of data across scales and domains
,” Sci. Adv.
4
, eaas8652
(2018
).33.
E. L.
Doubrovski
, E. Y.
Tsai
, D.
Dikovsky
, J. M. P.
Geraedts
, H.
Herr
, and N.
Oxman
, “Voxel-based fabrication through material property mapping: A design method for bitmap printing
,” Comput.-Aided Des.
60
, 3
–13
(2015
).34.
C.
Achille
, C.
Parra‐Cabrera
, R.
Dochy
, H.
Ordutowski
, A.
Piovesan
, P.
Piron
, L.
Van Looy
, S.
Kushwaha
, D.
Reynaerts
, P.
Verboven
, B.
Nicolaï
, J.
Lammertyn
, D.
Spasic
, and R.
Ameloot
, “3D printing of monolithic capillarity-driven microfluidic devices for diagnostics
,” Adv. Mater.
33
, 2008712
(2021
).35.
B.
Utela
, D.
Storti
, R.
Anderson
, and M.
Ganter
, “A review of process development steps for new material systems in three dimensional printing (3DP)
,” J. Manuf. Processes
10
, 96
–104
(2008
).36.
B. R.
Utela
, D.
Storti
, R. L.
Anderson
, and M.
Ganter
, “Development process for custom three-dimensional printing (3DP) material systems
,” J. Manuf. Sci. Eng.
132
, 0110081
–0110089
(2010
).37.
Trinseo
, “Altuglas PMMA beads
,” https://www.trinseo.com/Products/Plas- tics/Products/PMMA-and-MMA—EMEA-and-APAC/ALTUGLAS-PMMA-Beads; accessed October 2021.38.
S.
Lawson
, M.
Snarzyk
, D.
Hanify
, A. A.
Rownaghi
, and F.
Rezaei
, “Development of 3D-printed polymer-MOF monoliths for CO2 adsorption
,” Ind. Eng. Chem. Res.
59
, 7151
–7160
(2020
).39.
C. R.
Tubío
, J.
Azuaje
, L.
Escalante
, A.
Coelho
, F.
Guitián
, E.
Sotelo
, and A.
Gil
, “3D printing of a heterogeneous copper-based catalyst
,” J. Catal.
334
, 110
–115
(2016
).40.
D.
Liu
, P.
Jiang
, X.
Li
, J.
Liu
, L.
Zhou
, X.
Wang
, and F.
Zhou
, “3D printing of metal-organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation
,” Chem. Eng. J.
397
, 125392
(2020
).41.
H. M. A.
Kolken
, C. P.
de Jonge
, T.
van der Sloten
, A. F.
Garcia
, B.
Pouran
, K.
Willemsen
, H.
Weinans
, and A. A.
Zadpoor
, “Additively manufactured space-filling meta-implants
,” Acta Biomater.
125
, 345
–357
(2021
).42.
N.
Taniguchi
, S.
Fujibayashi
, M.
Takemoto
, K.
Sasaki
, B.
Otsuki
, T.
Nakamura
, T.
Matsushita
, T.
Kokubo
, and S.
Matsuda
, “Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment
,” Mater. Sci. Eng., C
59
, 690
–701
(2016
).43.
X.
Kuang
, J.
Wu
, K.
Chen
, Z.
Zhao
, Z.
Ding
, F.
Hu
, D.
Fang
, and H. J.
Qi
, “Grayscale digital light processing 3D printing for highly functionally graded materials
,” Sci. Adv.
5
, eaav5790
(2019
).44.
X.
Shuai
, Y.
Zeng
, P.
Li
, and J.
Chen
, “Fabrication of fine and complex lattice structure Al2O3 ceramic by digital light processing 3D printing technology
,” J. Mater. Sci.
55
, 6771
–6782
(2020
).45.
J. N.
Stuecker
, J. E.
Miller
, R. E.
Ferrizz
, J. E.
Mudd
, and J.
Cesarano
, “Advanced support structures for enhanced catalytic activity
,” Ind. Eng. Chem. Res.
43
, 51
–55
(2004
).46.
K.
Pucci
, “What is grayscale printing?
,” https://imagexpert.com/what-is-grayscale-printing; accessed September 2021.© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.