The limited control over the printing process in commercial powder bed 3D printers hinders the exploration of novel materials and applications. In this study, a custom binder-jetting 3D printer was developed. The resulting fine-grained control over the printing process enables features such as voxel-based control over the printed ink volume, adaptive layer thickness, and selective multi-pass printing. A protocol was developed to optimize the 3D printing process for new build materials and binders, in which resolution tests were used as a guideline for improving the dimensional accuracy. As a demonstration of the voxel-based control over the printing process, a functionally graded object was printed.

1.
M. J.
Harding
,
S.
Brady
,
H.
O’Connor
,
R.
Lopez-Rodriguez
,
M. D.
Edwards
,
S.
Tracy
,
D.
Dowling
,
G.
Gibson
,
K. P.
Girard
, and
S.
Ferguson
, “
3D printing of PEEK reactors for flow chemistry and continuous chemical processing
,”
React. Chem. Eng.
5
,
728
735
(
2020
).
2.
W.
Su
,
B. S.
Cook
,
Y.
Fang
, and
M. M.
Tentzeris
, “
Fully inkjet-printed microfluidics: A solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications
,”
Sci. Rep.
6
,
035111
(
2016
).
3.
H.
Gong
,
A. T.
Woolley
, and
G. P.
Nordin
, “
3D printed high density, reversible, chip-to-chip microfluidic interconnects
,”
Lab Chip
18
,
639
647
(
2018
).
4.
A. K.
Au
,
W.
Lee
, and
A.
Folch
, “
Mail-order microfluidics: Evaluation of stereolithography for the production of microfluidic devices
,”
Lab Chip
14
,
1294
1301
(
2014
).
5.
S.
Waheed
,
J. M.
Cabot
,
N. P.
Macdonald
,
T.
Lewis
,
R. M.
Guijt
,
B.
Paull
, and
M. C.
Breadmore
, “
3D printed microfluidic devices: Enablers and barriers
,”
Lab Chip
16
,
1993
2013
(
2016
).
6.
B.
Zhang
,
X.
Pei
,
P.
Song
,
H.
Sun
,
H.
Li
,
Y.
Fan
,
Q.
Jiang
,
C.
Zhou
, and
X.
Zhang
, “
Porous bioceramics produced by inkjet 3D printing: Effect of printing ink formulation on the ceramic macro and micro porous architectures control
,”
Composites, Part B
155
,
112
121
(
2018
).
7.
M. J.
Zafar
,
D.
Zhu
, and
Z.
Zhang
, “
3D printing of bioceramics for bone tissue engineering
,”
Materials
12
,
3361
(
2019
).
8.
H.
Ma
,
C.
Feng
,
J.
Chang
, and
C.
Wu
, “
3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy
,”
Acta Biomater.
79
,
37
59
(
2018
).
9.
K. K.
Mallick
and
J.
Winnett
,
Bone Substitute Biomaterials
(
Woodhead Publishing
,
Cambridge
,
2014
), pp.
118
141
.
10.
A.
Lind
,
Ø.
Vistad
,
M. F.
Sunding
,
K. A.
Andreassen
,
J. H.
Cavka
, and
C. A.
Grande
, “
Multi-purpose structured catalysts designed and manufactured by 3D printing
,”
Mater. Des.
187
,
108377
(
2020
).
11.
X.
Zhou
and
C. J.
Liu
, “
Three-dimensional printing for catalytic applications: Current status and perspectives
,”
Adv. Funct. Mater.
27
,
1701134
(
2017
).
12.
V.
Saggiomo
, in
Catalyst Immobilization
, edited by
M.
Benaglia
and
A.
Puglisi
(
Wiley VCH
,
Weinheim
,
2019
), pp.
369
408
.
13.
H.
Maleki
and
V.
Bertola
, “
Recent advances and prospects of inkjet printing in heterogeneous catalysis
,”
Catal.: Sci. Technol.
10
,
3140
3159
(
2020
).
14.
C.
Parra-Cabrera
,
C.
Achille
,
S.
Kuhn
, and
R.
Ameloot
, “
3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors
,”
Chem. Soc. Rev.
47
,
209
230
(
2018
).
15.
C.
Hurt
,
M.
Brandt
,
S. S.
Priya
,
T.
Bhatelia
,
J.
Patel
,
P.
Selvakannan
, and
S.
Bhargava
, “
Combining additive manufacturing and catalysis: A review
,”
Catal.: Sci. Technol.
7
,
3421
3439
(
2017
).
16.
J.
Hoerber
,
J.
Glasschroeder
,
M.
Pfeffer
,
J.
Schilp
,
M.
Zaeh
, and
J.
Franke
, “
Approaches for additive manufacturing of 3D electronic applications
,”
Procedia CIRP
17
,
806
811
(
2014
).
17.
H. W.
Tan
,
J.
An
,
C. K.
Chua
, and
T.
Tran
, “
Metallic nanoparticle inks for 3D printing of electronics
,”
Adv. Electron. Mater.
5
,
1800831
(
2019
).
18.
X.
Lu
,
T.
Zhao
,
X.
Ji
,
J.
Hu
,
T.
Li
,
X.
Lin
, and
W.
Huang
, “
3D printing well organized porous iron-nickel/polyaniline nanocages multiscale supercapacitor
,”
J. Alloys Compd.
760
,
78
83
(
2018
).
19.
Z.
Sun
and
L. F.
Velásquez–García
, “
Miniature, 3D-printed, monolithic arrays of corona ionizers
,”
J. Phys.: Conf. Ser.
1407
,
012065
(
2019
).
20.
S. Y.
Jun
,
B.
Sanz-Izquierdo
,
E. A.
Parker
,
D.
Bird
, and
A.
McClelland
, “
Manufacturing considerations in the 3-D printing of fractal antennas
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
7
,
1891
1898
(
2017
).
21.
L. A.
Chavez
,
B. R.
Wilburn
,
P.
Ibave
,
L. C.
Delfin
,
S.
Vargas
,
H.
Diaz
,
C.
Fulgentes
,
A.
Renteria
,
J.
Regis
,
Y.
Liu
,
R. B.
Wicker
, and
Y.
Lin
, “
Fabrication and characterization of 3D printing induced orthotropic functional ceramics
,”
Smart Mater. Struct.
28
,
125007
(
2019
).
22.
P.
Yang
and
H. J.
Fan
, “
Inkjet and extrusion printing for electrochemical energy storage: A minireview
,”
Adv. Mater. Technol.
5
,
2000217
(
2020
).
23.
S. C.
Ligon
,
R.
Liska
,
J.
Stampfl
,
M.
Gurr
, and
R.
Mülhaupt
, “
Polymers for 3D printing and customized additive manufacturing
,”
Chem. Rev.
117
,
10212
10290
(
2017
).
24.
J.-Y.
Lee
,
J.
An
, and
C. K.
Chua
, “
Fundamentals and applications of 3D printing for novel materials
,”
Appl. Mater. Today
7
,
120
133
(
2017
).
25.
A.
Mostafaei
,
A. M.
Elliott
,
J. E.
Barnes
,
F.
Li
,
W.
Tan
,
C. L.
Cramer
,
P.
Nandwana
, and
M.
Chmielus
, “
Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges
,”
Prog. Mater. Sci.
119
,
100707
(
2021
).
26.
L. C.
Hwa
,
S.
Rajoo
,
A. M.
Noor
,
N.
Ahmad
, and
M. B.
Uday
, “
Recent advances in 3D printing of porous ceramics: A review
,”
Curr. Opin. Solid State Mater. Sci.
21
,
323
347
(
2017
).
27.
G. K.
Meenashisundaram
,
Z.
Xu
,
M. L. S.
Nai
,
S.
Lu
,
J. S.
Ten
, and
J.
Wei
, “
Binder jetting additive manufacturing of high porosity 316L stainless steel metal foams
,”
Materials
13
,
3744
(
2020
).
28.
X.
Lv
,
F.
Ye
,
L.
Cheng
,
S.
Fan
, and
Y.
Liu
, “
Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment
,”
Ceram. Int.
45
,
12609
12624
(
2019
).
29.
M.
Ziaee
and
N. B.
Crane
, “
Binder jetting: A review of process, materials, and methods
,”
Addit. Manuf.
28
,
781
801
(
2019
).
30.
T.
Sivarupan
,
N.
Balasubramani
,
P.
Saxena
,
D.
Nagarajan
,
M.
El Mansori
,
K.
Salonitis
,
M.
Jolly
, and
M. S.
Dargusch
, “
A review on the progress and challenges of binder jet 3D printing of sand moulds for advanced casting
,”
Addit. Manuf.
40
,
101889
(
2021
).
31.
M.
Morbidelli
,
A.
Gavriilidis
, and
A.
Varma
,
Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes
(
Cambridge University Press
,
Cambridge
,
2001
).
32.
C.
Bader
,
D.
Kolb
,
J. C.
Weaver
,
S.
Sharma
,
A.
Hosny
,
J.
Costa
, and
N.
Oxman
, “
Making data matter: Voxel printing for the digital fabrication of data across scales and domains
,”
Sci. Adv.
4
,
eaas8652
(
2018
).
33.
E. L.
Doubrovski
,
E. Y.
Tsai
,
D.
Dikovsky
,
J. M. P.
Geraedts
,
H.
Herr
, and
N.
Oxman
, “
Voxel-based fabrication through material property mapping: A design method for bitmap printing
,”
Comput.-Aided Des.
60
,
3
13
(
2015
).
34.
C.
Achille
,
C.
Parra‐Cabrera
,
R.
Dochy
,
H.
Ordutowski
,
A.
Piovesan
,
P.
Piron
,
L.
Van Looy
,
S.
Kushwaha
,
D.
Reynaerts
,
P.
Verboven
,
B.
Nicolaï
,
J.
Lammertyn
,
D.
Spasic
, and
R.
Ameloot
, “
3D printing of monolithic capillarity-driven microfluidic devices for diagnostics
,”
Adv. Mater.
33
,
2008712
(
2021
).
35.
B.
Utela
,
D.
Storti
,
R.
Anderson
, and
M.
Ganter
, “
A review of process development steps for new material systems in three dimensional printing (3DP)
,”
J. Manuf. Processes
10
,
96
104
(
2008
).
36.
B. R.
Utela
,
D.
Storti
,
R. L.
Anderson
, and
M.
Ganter
, “
Development process for custom three-dimensional printing (3DP) material systems
,”
J. Manuf. Sci. Eng.
132
,
0110081
0110089
(
2010
).
38.
S.
Lawson
,
M.
Snarzyk
,
D.
Hanify
,
A. A.
Rownaghi
, and
F.
Rezaei
, “
Development of 3D-printed polymer-MOF monoliths for CO2 adsorption
,”
Ind. Eng. Chem. Res.
59
,
7151
7160
(
2020
).
39.
C. R.
Tubío
,
J.
Azuaje
,
L.
Escalante
,
A.
Coelho
,
F.
Guitián
,
E.
Sotelo
, and
A.
Gil
, “
3D printing of a heterogeneous copper-based catalyst
,”
J. Catal.
334
,
110
115
(
2016
).
40.
D.
Liu
,
P.
Jiang
,
X.
Li
,
J.
Liu
,
L.
Zhou
,
X.
Wang
, and
F.
Zhou
, “
3D printing of metal-organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation
,”
Chem. Eng. J.
397
,
125392
(
2020
).
41.
H. M. A.
Kolken
,
C. P.
de Jonge
,
T.
van der Sloten
,
A. F.
Garcia
,
B.
Pouran
,
K.
Willemsen
,
H.
Weinans
, and
A. A.
Zadpoor
, “
Additively manufactured space-filling meta-implants
,”
Acta Biomater.
125
,
345
357
(
2021
).
42.
N.
Taniguchi
,
S.
Fujibayashi
,
M.
Takemoto
,
K.
Sasaki
,
B.
Otsuki
,
T.
Nakamura
,
T.
Matsushita
,
T.
Kokubo
, and
S.
Matsuda
, “
Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment
,”
Mater. Sci. Eng., C
59
,
690
701
(
2016
).
43.
X.
Kuang
,
J.
Wu
,
K.
Chen
,
Z.
Zhao
,
Z.
Ding
,
F.
Hu
,
D.
Fang
, and
H. J.
Qi
, “
Grayscale digital light processing 3D printing for highly functionally graded materials
,”
Sci. Adv.
5
,
eaav5790
(
2019
).
44.
X.
Shuai
,
Y.
Zeng
,
P.
Li
, and
J.
Chen
, “
Fabrication of fine and complex lattice structure Al2O3 ceramic by digital light processing 3D printing technology
,”
J. Mater. Sci.
55
,
6771
6782
(
2020
).
45.
J. N.
Stuecker
,
J. E.
Miller
,
R. E.
Ferrizz
,
J. E.
Mudd
, and
J.
Cesarano
, “
Advanced support structures for enhanced catalytic activity
,”
Ind. Eng. Chem. Res.
43
,
51
55
(
2004
).
46.
K.
Pucci
, “
What is grayscale printing?
,” https://imagexpert.com/what-is-grayscale-printing; accessed September 2021.

Supplementary Material

You do not currently have access to this content.