Microstructuring, in particular, the additive functionalization of surfaces with, e.g., conductive or bioactive materials plays a crucial role in many applications in sensing or printed electronics. Mostly, the lithography steps are made prior to assembling functionalized surfaces into the desired places of use within a bigger device as a microfluidic channel or an electronic casing. However, when this is not possible, most lithography techniques struggle with access to recessed or inclined/vertical surfaces for geometrical reasons. In particular, for “on-the-fly” printing aiming to add microstructures to already existing devices on demand and maybe even for one-time trials, e.g., in prototyping, a flexible “micropencil” allowing for direct write under direct manual control and on arbitrarily positioned surfaces would be highly desirable. Here, we present a highly flexible, micromanipulator-based setup for capillary printing of conductive and biomaterial ink formulations that can address a wide range of geometries as exemplified on vertical, recessed surfaces and stacked 3D scaffolds as models for hard to access surfaces. A wide range of feature sizes from tens to hundreds of micrometer can be obtained by the choice of capillary sizes and the on-demand in situ writing capabilities are demonstrated with completion of a circuit structure by gold line interconnects deposited with the setup.

1.
K.
Fukuda
,
Y.
Takeda
,
Y.
Yoshimura
,
R.
Shiwaku
,
L. T.
Tran
,
T.
Sekine
,
M.
Mizukami
,
D.
Kumaki
, and
S.
Tokito
,
Nat. Commun.
5
,
4147
(
2014
).
2.
T.
Minamiki
,
T.
Minami
,
Y.-P.
Chen
,
T.
Mano
,
Y.
Takeda
,
K.
Fukuda
, and
S.
Tokito
,
Commun. Mater.
2
,
8
(
2021
).
3.
J.
Liu
,
J.
Wang
,
Z.
Zhang
,
F.
Molina-Lopez
,
G.-J. N.
Wang
,
B. C.
Schroeder
,
X.
Yan
,
Y.
Zeng
,
O.
Zhao
,
H.
Tran
,
T.
Lei
,
Y.
Lu
,
Y.-X.
Wang
,
J. B.-H.
Tok
,
R.
Dauskardt
,
J. W.
Chung
,
Y.
Yun
, and
Z.
Bao
,
Nat. Commun.
11
,
3362
(
2020
).
4.
C. L.
Baumbauer
,
M. G.
Anderson
,
J.
Ting
,
A.
Sreekumar
,
J. M.
Rabaey
,
A. C.
Arias
, and
A.
Thielens
,
Sci. Rep.
10
,
16543
(
2020
).
5.
M.
Horák
,
K.
Bukvišová
,
V.
Švarc
,
J.
Jaskowiec
,
V.
Křápek
, and
T.
Šikola
,
Sci. Rep.
8
,
9640
(
2018
).
6.
L.-B.
Huang
,
J.-C.
Han
,
S.
Chen
,
Z.
Sun
,
X.
Dai
,
P.
Ge
,
C.-H.
Zhao
,
Q.-Q.
Zheng
,
F.-C.
Sun
, and
J.
Hao
,
Nano Energy
84
,
105873
(
2021
).
7.
P.
Rath
,
M.
Hirtz
,
G.
Lewes-Malandrakis
,
D.
Brink
,
C.
Nebel
, and
W. H. P.
Pernice
,
Adv. Opt. Mater.
3
,
328
(
2015
).
8.
Y.-F.
Wang
,
T.
Sekine
,
Y.
Takeda
,
K.
Yokosawa
,
H.
Matsui
,
D.
Kumaki
,
T.
Shiba
,
T.
Nishikawa
, and
S.
Tokito
,
Sci. Rep.
10
,
2467
(
2020
).
9.
S.
Harada
,
K.
Kanao
,
Y.
Yamamoto
,
T.
Arie
,
S.
Akita
, and
K.
Takei
,
ACS Nano
8
,
12851
(
2014
).
10.
P.
He
,
J. R.
Brent
,
H.
Ding
,
J.
Yang
,
D. J.
Lewis
,
P.
O'Brien
, and
B.
Derby
,
Nanoscale
10
,
5599
(
2018
).
11.
J. B.
Andrews
,
J. A.
Cardenas
,
C. J.
Lim
,
S. G.
Noyce
,
J.
Mullett
, and
A. D.
Franklin
,
IEEE Sens. J.
18
,
7875
(
2018
).
12.
T.
Sekine
,
R.
Sugano
,
T.
Tashiro
,
J.
Sato
,
Y.
Takeda
,
H.
Matsui
,
D.
Kumaki
,
F.
Domingues Dos Santos
,
A.
Miyabo
, and
S.
Tokito
,
Sci. Rep.
8
,
4442
(
2018
).
13.
E.
Bihar
,
S.
Wustoni
,
A. M.
Pappa
,
K. N.
Salama
,
D.
Baran
, and
S.
Inal
,
npj Flexible Electron.
2
,
30
(
2018
).
14.
E.
Song
,
R. P.
Tortorich
,
T. H.
da Costa
, and
J.-W.
Choi
,
Microelectron. Eng.
145
,
143
(
2015
).
15.
A.
Angelin
,
U.
Bog
,
R.
Kumar
,
C. M.
Niemeyer
, and
M.
Hirtz
,
Polymers
11
,
891
(
2019
).
16.
M.
Hirtz
,
A.
Oikonomou
,
T.
Georgiou
,
H.
Fuchs
, and
A.
Vijayaraghavan
,
Nat. Commun.
4
,
2591
(
2013
).
17.
M.
Colina
,
P.
Serra
,
J. M.
Fernández-Pradas
,
L.
Sevilla
, and
J. L.
Morenza
,
Biosens. Bioelectron.
20
,
1638
(
2005
).
18.
A.
Hacohen
,
H. R.
Jessel
,
A.
Richter-Levin
, and
O.
Shefi
,
Micromachines
11
,
505
(
2020
).
19.
J. A.
Barron
,
H. D.
Young
,
D. D.
Dlott
,
M. M.
Darfler
,
D. B.
Krizman
, and
B. R.
Ringeisen
,
Proteomics
5
,
4138
(
2005
).
20.
H.
Wagner
,
Y.
Li
,
M.
Hirtz
,
L.
Chi
,
H.
Fuchs
, and
A.
Studer
,
Soft Matter
7
,
9854
(
2011
).
21.
J.
Bian
,
L.
Zhou
,
X.
Wan
,
C.
Zhu
,
B.
Yang
, and
Y.
Huang
,
Adv. Electron. Mater.
5
,
1800900
(
2019
).
22.
I.-N.
Lee
,
J.
Hosford
,
S.
Wang
,
J. A.
Hunt
,
J. M.
Curran
,
W. P.
Heath
, and
L. S.
Wong
,
J. Visualized Exp.
136
,
e56967
(
2018
).
23.
V. N.
Morozov
and
T. Y.
Morozova
,
Anal. Chem.
71
,
3110
(
1999
).
24.
X.
Chen
,
X.
Liu
,
M.
Ouyang
,
J.
Chen
,
O.
Taiwo
,
Y.
Xia
,
P. R. N.
Childs
,
N. P.
Brandon
, and
B.
Wu
,
Sci. Rep.
9
,
3973
(
2019
).
25.
H.
Wagner
,
M. K.
Brinks
,
M.
Hirtz
,
A.
Schäfer
,
L.
Chi
, and
A.
Studer
,
Chem. - Eur. J.
17
,
9107
(
2011
).
26.
G.
Liu
,
M.
Hirtz
,
H.
Fuchs
, and
Z.
Zheng
,
Small
15
,
1900564
(
2019
).
27.
R. D.
Piner
,
J.
Zhu
,
F.
Xu
,
S.
Hong
, and
C. A.
Mirkin
,
Science
283
,
661
(
1999
).
28.
R.
Garcia
,
A. W.
Knoll
, and
E.
Riedo
,
Nat. Nanotechnol.
9
,
577
(
2014
).
29.
S. A. M.
Carnally
and
L. S.
Wong
,
Nanoscale
6
,
4998
(
2014
).
30.
T. H.
da Costa
and
J.-W.
Choi
,
Micro Nano Syst. Lett.
8
,
2
(
2020
).
31.
B. Y.
Ahn
,
E. B.
Duoss
,
M. J.
Motala
,
X.
Guo
,
S.-I.
Park
,
Y.
Xiong
,
J.
Yoon
,
R. G.
Nuzzo
,
J. A.
Rogers
, and
J. A.
Lewis
,
Science
323
,
1590
(
2009
).
32.
J. W.
Boley
,
E. L.
White
,
G. T.-C.
Chiu
, and
R. K.
Kramer
,
Adv. Funct. Mater.
24
,
3501
(
2014
).
33.
G. M.
Gratson
,
M.
Xu
, and
J. A.
Lewis
,
Nature
428
,
386
(
2004
).
34.
W.
Courbat
and
J.
Jatzkowski
,
Electron. Device Failure Anal.
21
,
22
(
2019
); available at https://static.asminternational.org/EDFA/201911/28/.
35.
W.
Geng
,
S.
Kostcheev
,
C.
Sartel
,
V.
Sallet
,
M.
Molinari
,
O.
Simonetti
,
G.
Lérondel
,
L.
Giraudet
, and
C.
Couteau
,
Phys. Status Solidi C
10
,
1292
(
2013
).
36.
M.
Power
and
G.-Z.
Yang
, in
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IEEE
,
2015
), pp.
790
797
.
37.
E. F.
Arkan
,
D.
Sacchetto
,
I.
Yildiz
,
Y.
Leblebici
, and
B. E.
Alaca
,
J. Micromech. Microeng.
21
,
125018
(
2011
).
38.
D.
Thuau
,
C.
Ayela
,
P.
Poulin
, and
I.
Dufour
,
Sens. Actuators, A
209
,
161
(
2014
).
41.
E. g.
Surendra Kumar
, Apharya was reported to being registered in the Guiness Book of world records 7 times, among others for writing 1749 characters on a single grain of rice.
42.
J.
Harberts
,
C.
Fendler
,
J.
Teuber
,
M.
Siegmund
,
A.
Silva
,
N.
Rieck
,
M.
Wolpert
,
R.
Zierold
, and
R. H.
Blick
,
ACS Nano
14
,
13091
(
2020
).
43.
J.
Xu
,
M.
Lynch
,
S.
Nettikadan
,
C.
Mosher
,
S.
Vegasandra
, and
E.
Henderson
,
Sens. Actuators, B
113
,
1034
(
2006
).
44.
F.
Brinkmann
,
M.
Hirtz
,
A. M.
Greiner
,
M.
Weschenfelder
,
B.
Waterkotte
,
M.
Bastmeyer
, and
H.
Fuchs
,
Small
9
,
3265
(
2013
).
You do not currently have access to this content.