In this paper, a Mach–Zehnder interferometer temperature sensor with a single-mode fiber–thin-core fiber–single-mode fiber cascaded is designed. When the light is transmitted from the single-mode fiber to the thin-core fiber, different modes will be excited because of the mode-field mismatch. Optical power from the input fiber can be partly coupled to the cladding modes of the thin-core fiber, and the cladding modes of the thin-core fiber then re-coupled to the lead-out fiber, which constitutes the Mach–Zehnder interferometer in the output single-mode fiber. To improve the temperature sensitivity of the sensor, we coated the thermal-sensitive material (such as polymethoxane or ultraviolet glue) on the surface of the thin-core fiber. The experimental results show that the temperature sensitivity of the sensor coated with a polydimethylsiloxane film was increased from 32.0 to 90.0 pm/°C, about three times, compared to the uncoated thin-core fiber sensor. When the surface of the thin-core fiber is coated with an ultraviolet glue film, the temperature sensitivity of the sensor was increased from 32.0 to 166.8 pm/°C, about six times. The designed sensor, with compact structure, simple production, strong robustness, and high sensitivity, has a wide application prospect in industrial production and national defense technology.

1.
J. E.
Antonio-Lopez
,
Z. S.
Eznaveh
,
P.
LiKamWa
,
A.
Schulzgen
, and
R.
Amezcua-Correa
,
Opt. Lett.
39
,
4309
(
2014
).
2.
L. V.
Nguyen
,
D.
Hwang
,
S.
Moon
,
D. S.
Moon
, and
Y.
Chung
,
Opt. Express
16
,
11369
(
2008
).
3.
Y.
Yang
,
Y.
Wang
,
Y.
Zhao
, and
J.
Jiang
,
J. Russ. Laser Res.
40
,
243
(
2019
).
4.
Y.
Liu
and
D. N.
Wang
,
IEEE Photonics Technol. Lett.
30
,
293
296
(
2018
).
5.
Y.
Zhao
,
M.
Dai
,
Z.
Chen
,
X.
Liu
,
M. S. A.
Gandhi
,
Q.
Li
, and
H. Y.
Fu
,
Opt. Express
29
,
1090
(
2021
).
6.
L.-Y.
Shao
,
Y.
Luo
,
Z.
Zhang
,
X.
Zou
,
B.
Luo
,
W.
Pan
, and
L.
Yan
,
Opt. Commun.
336
,
73
(
2015
).
7.
V.
Bhatia
,
D.
Campbell
, and
R. O.
Claus
,
Opt. Lett.
22
,
648
(
1997
).
8.
E.
Chehura
,
S. W.
James
, and
R. P.
Tatam
,
Opt. Commun.
275
,
344
(
2007
).
9.
U.
Eduok
,
O.
Faye
, and
J.
Szpunar
,
Prog. Org. Coat.
111
,
124
(
2017
).
10.
M.
Ge
,
Y.
Li
,
Y.
Han
,
Z.
Xia
,
Z.
Guo
,
J.
Gao
, and
S.
Qu
,
J. Mod. Opt.
64
,
596
(
2016
).
11.
J.
Zhang
,
H.
Liao
,
P.
Lu
,
X.
Jiang
,
X.
Fu
,
W.
Ni
,
D.
Liu
, and
J.
Zhang
,
IEEE Photonics J.
10
,
1
(
2018
).
12.
Y.
Liu
,
D.
Yang
,
Y.
Wang
,
T.
Zhang
,
M.
Shao
,
D.
Yu
,
H.
Fu
, and
Z.
Jia
,
Opt. Commun.
443
,
166
(
2019
).
13.
B.
Sun
,
Y.
Wang
,
J.
Qu
,
C.
Liao
,
G.
Yin
,
J.
He
,
J.
Zhou
,
J.
Tang
,
S.
Liu
,
Z.
Li
, and
Y.
Liu
,
Opt. Express
23
,
1906
(
2015
).
14.
T.
Zhang
,
Y.
Liu
,
D.
Yang
,
Y.
Wang
,
H.
Fu
,
Z.
Jia
, and
H.
Gao
,
Opt. Fiber Technol.
49
,
64
(
2019
).
15.
M.-q.
Chen
,
Y.
Zhao
,
F.
Xia
,
Y.
Peng
, and
R.-j.
Tong
,
Sens. Actuators, A
275
,
60
(
2018
).
16.
L.
Hou
,
C.
Zhao
,
B.
Xu
,
B.
Mao
,
C.
Shen
, and
D. N.
Wang
,
Appl. Opt.
58
,
4858
(
2019
).
17.
J.
Li
,
B.
Mao
,
B.
Xu
,
C.
Shen
,
R.
Xu
,
L.
Wang
,
D.
Wang
, and
C.
Zhao
,
Appl. Opt.
59
,
9773
(
2020
).
18.
D.
Fu
,
X.
Liu
,
J.
Shang
,
W.
Sun
, and
Y.
Liu
,
IEEE Photonics Technol. Lett.
32
,
19759971
(
2020
).
19.
C.-S.
Park
,
K.-I.
Joo
,
S.-W.
Kang
, and
H.-R.
Kim
,
J. Opt. Soc. Korea
15
,
329
(
2011
).
20.
F.
Xia
,
Y.
Zhao
,
H.-k.
Zheng
,
L.-k.
Li
, and
R.-j.
Tong
,
Opt. Laser Technol.
132
,
106458
(
2020
).

Supplementary Material

You do not currently have access to this content.