In this article, a new multi-functional high-vacuum astrophysical ice setup, VIZSLA (Versatile Ice Zigzag Sublimation Setup for Laboratory Astrochemistry), is introduced. The instrument allows for the investigation of astrophysical processes both in a low-temperature para-H2 matrix and in astrophysical analog ices. In the para-H2 matrix, the reaction of astrochemical molecules with H atoms and H+ ions can be studied effectively. For the investigation of astrophysical analog ices, the setup is equipped with various irradiation and particle sources: an electron gun for modeling cosmic rays, an H atom beam source, a microwave H atom lamp for generating H Lyman-α radiation, and a tunable (213–2800 nm) laser source. For analysis, an FT-IR (and a UV–visible) spectrometer and a quadrupole mass analyzer are available. The setup has two cryostats, offering novel features for analysis. Upon the so-called temperature-programmed desorption (TPD), the molecules, desorbing from the substrate of the first cryogenic head, can be mixed with Ar and can be deposited onto the substrate of the other cryogenic head. The efficiency of the redeposition was measured to be between 8% and 20% depending on the sample and the redeposition conditions. The well-resolved spectrum of the molecules isolated in an Ar matrix serves a unique opportunity to identify the desorbing products of a processed ice. Some examples are provided to show how the para-H2 matrix experiments and the TPD–matrix-isolation recondensation experiments can help understand astrophysically important chemical processes at low temperatures. It is also discussed how these experiments can complement the studies carried out by using similar astrophysical ice setups.

1.
P.
Swings
and
L.
Rosenfeld
,
Astrophys. J.
86
,
483
(
1937
).
2.
A.
McKellar
,
Publ. Astron. Soc. Pac.
52
,
187
(
1940
).
3.
D. E.
Woon
, Interstellar Circumstellar Molecules, http://www.astrochymist.org/astrochymist_ism.html; accessed April 30, 2021.
4.
Molecules in Space, https://cdms.astro.uni-koeln.de/classic/molecules; accessed June 28, 2021.
5.
J. P.
Gardner
,
J. C.
Mather
,
M.
Clampin
,
R.
Doyon
,
M. A.
Greenhouse
,
H. B.
Hammel
,
J. B.
Hutchings
,
P.
Jakobsen
,
S. J.
Lilly
,
K. S.
Long
,
J. I.
Lunine
,
M. J.
McCaughrean
,
M.
Mountain
,
J.
Nella
,
G. H.
Rieke
,
M. J.
Rieke
,
H.-W.
Rix
,
E. P.
Smith
,
G.
Sonneborn
,
M.
Stiavelli
,
H. S.
Stockman
,
R. A.
Windhorst
, and
G. S.
Wright
,
Space Sci. Rev.
123
,
485
(
2006
).
6.
Solid State Astrochemistry
, edited by
V.
Pirronello
,
J.
Krelowski
, and
G.
Manicò
(
Springer Netherlands
,
Dordrecht, The Netherlands
,
2003
).
7.
8.
V.
Wakelam
,
E.
Bron
,
S.
Cazaux
,
F.
Dulieu
,
C.
Gry
,
P.
Guillard
,
E.
Habart
,
L.
Hornekær
,
S.
Morisset
,
G.
Nyman
,
V.
Pirronello
,
S. D.
Price
,
V.
Valdivia
,
G.
Vidali
, and
N.
Watanabe
,
Mol. Astrophys.
9
,
1
(
2017
).
9.
S.
Ioppolo
,
G.
Fedoseev
,
T.
Lamberts
,
C.
Romanzin
, and
H.
Linnartz
,
Rev. Sci. Instrum.
84
,
073112
(
2013
).
10.
D.
Qasim
,
M. J. A.
Witlox
,
G.
Fedoseev
,
K.-J.
Chuang
,
T.
Banu
,
S. A.
Krasnokutski
,
S.
Ioppolo
,
J.
Kästner
,
E. F.
van Dishoeck
, and
H.
Linnartz
,
Rev. Sci. Instrum.
91
,
054501
(
2020
).
11.
B. M.
Jones
and
R. I.
Kaiser
,
J. Phys. Chem. Lett.
4
,
1965
(
2013
).
12.
E.
Matar
, “
Interaction of atomic and molecular hydrogen with amorphous water ice surfaces mimicking interstellar dust
,” Ph.D. thesis,
Université de Cergy Pontoise
,
2009
.
13.
E.
Congiu
,
A.
Sow
,
T.
Nguyen
,
S.
Baouche
, and
F.
Dulieu
,
Rev. Sci. Instrum.
91
,
124504
(
2020
).
14.
D. V.
Mifsud
,
Z.
Juhász
,
P.
Herczku
,
S. T. S.
Kovács
,
S.
Ioppolo
,
Z.
Kaňuchová
,
M.
Czentye
,
P. A.
Hailey
,
A. T.
Muiña
,
N. J.
Mason
,
R. W.
McCullough
,
B.
Paripás
, and
B.
Sulik
,
Eur. Phys. J. D
75
,
182
(
2021
).
15.
P.
Herczku
,
D. V.
Mifsud
,
S.
Ioppolo
,
Z.
Juhász
,
Z.
Kaňuchová
,
S. T. S.
Kovács
,
A.
Traspas Muiña
,
P. A.
Hailey
,
I.
Rajta
,
I.
Vajda
,
N. J.
Mason
,
R. W.
McCullough
,
B.
Paripás
, and
B.
Sulik
,
Rev. Sci. Instrum.
92
,
084501
(
2021
).
16.
T.
Lauck
,
L.
Karssemeijer
,
K.
Shulenberger
,
M.
Rajappan
,
K. I.
Öberg
, and
H. M.
Cuppen
,
Astrophys. J.
801
,
118
(
2015
).
17.
R. L.
James
,
S.
Ioppolo
,
S. V.
Hoffmann
,
N. C.
Jones
,
N. J.
Mason
, and
A.
Dawes
,
RSC Adv.
10
,
37515
(
2020
).
18.
S.
Pilling
and
A.
Bergantini
,
Astrophys. J.
811
,
151
(
2015
).
19.
S.
Sandford
and
M.
Nuevo
, Ices, Ice Irradiation, and Organics Laboratory for AstroBiology, https://www.nasa.gov/ames/spacescience-and-astrobiology/ices-ice-irradiation-and-organics-laboratory-for-astrobiology; accessed March 29, 2021.
20.
G. A.
Baratta
,
D.
Chaput
,
H.
Cottin
,
L.
Fernandez Cascales
,
M. E.
Palumbo
, and
G.
Strazzulla
,
Planet. Space Sci.
118
,
211
(
2015
).
21.
INAF—Osservatorio Astronomico de Capodimonte, http://www.oacn.inaf.it/; accessed October 15, 2021.
22.
D.
Fulvio
,
S.
Góbi
,
C.
Jäger
,
Á.
Kereszturi
, and
T.
Henning
,
Astrophys. J., Suppl. Ser.
233
,
14
(
2017
).
23.
N.
Watanabe
, Astrophysical Chemistry/Ice and Planetary Science Group, http://www.lowtem.hokudai.ac.jp/astro/index_e.html; accessed May 20, 2021.
24.
M. J.
Abplanalp
,
A.
Borsuk
,
B. M.
Jones
, and
R. I.
Kaiser
,
Astrophys. J.
814
,
45
(
2015
).
25.
E.
Whittle
,
D. A.
Dows
, and
G. C.
Pimentel
,
J. Chem. Phys.
22
,
1943
(
1954
).
26.
Chemistry and Physics of Matrix-Isolated Species
, edited by
L.
Andrews
and
M.
Moskovits
(
North-Holland
,
Amsterdam, The Netherlands
,
1989
).
27.
M.
Tsuge
and
Y.-P.
Lee
, in
Molecular and Laser Spectroscopy
, edited by
V. P.
Gupta
and
Y.
Ozaki
(
Elsevier
,
Amsterdam, The Netherlands
,
2020
), pp.
167
215
.
28.
M.
Fushitani
and
T.
Momose
,
Low Temp. Phys.
29
,
740
(
2003
).
29.
K. A.
Kufeld
,
W. R.
Wonderly
,
L. O.
Paulson
,
S. C.
Kettwich
, and
D. T.
Anderson
,
J. Phys. Chem. Lett.
3
,
342
(
2012
).
30.
M.
Ruzi
and
D. T.
Anderson
,
J. Phys. Chem. A
119
,
12270
(
2015
).
31.
M. E.
Balabanoff
,
M.
Ruzi
, and
D. T.
Anderson
,
Phys. Chem. Chem. Phys.
20
,
422
(
2018
).
32.
G.
Tarczay
,
K.
Haupa
, and
Y.-P.
Lee
,
Proc. Int. Astron. Union
15
,
394
(
2019
).
33.
M.-C.
Chan
,
M.
Okumura
, and
T.
Oka
,
J. Phys. Chem. A
104
,
3775
(
2000
).
34.
P.
Theulé
,
C.
Endres
,
M.
Hermanns
,
J. B.
Bossa
, and
A.
Potapov
,
ACS Earth Space Chem.
4
,
86
(
2020
).
35.
K. M.
Yocum
,
H. H.
Smith
,
E. W.
Todd
,
L.
Mora
,
P. A.
Gerakines
,
S. N.
Milam
, and
S. L.
Widicus Weaver
,
J. Phys. Chem. A
123
,
8702
(
2019
).
36.
S.
Maity
,
R. I.
Kaiser
, and
B. M.
Jones
,
Faraday Discuss.
168
,
485
(
2014
).
37.

VIZSLA is a hunter dog breed from Hungary. The name means searcher or tracker in Hungarian. The verb “vizslat” means to observe in details, to nose about, to scan.

38.
B. A.
Tom
,
S.
Bhasker
,
Y.
Miyamoto
,
T.
Momose
, and
B. J.
McCall
,
Rev. Sci. Instrum.
80
,
016108
(
2009
).
39.
N. F. W.
Ligterink
,
D. M.
Paardekooper
,
K. J.
Chuang
,
M. L.
Both
,
G. A.
Cruz-Diaz
,
J. H.
van Helden
, and
H.
Linnartz
,
Astron. Astrophys.
584
,
A56
(
2015
).
40.
H.
Schnöckel
and
H.
Willner
, in
Infrared and Raman Spectroscopy: Methods and Applications
, edited by
B.
Schrader
(
VCH
,
Weinheim, Germany
,
1996
), pp.
297
313
.
41.
S.
Tam
and
M. E.
Fajardo
,
Rev. Sci. Instrum.
70
,
1926
(
1999
).
42.
P.
Sundararajan
,
M.
Tsuge
,
M.
Baba
,
H.
Sakurai
, and
Y.-P.
Lee
,
J. Chem. Phys.
151
,
044304
(
2019
).
43.
K. A.
Haupa
,
A. G. G. M.
Tielens
, and
Y.-P.
Lee
,
Phys. Chem. Chem. Phys.
19
,
16169
(
2017
).
44.
J. C.
Amicangelo
and
Y.-P.
Lee
,
J. Chem. Phys.
149
,
204304
(
2018
).
45.
G. T.
Pullen
,
P. R.
Franke
,
K. A.
Haupa
,
Y.-P.
Lee
, and
G. E.
Douberly
,
J. Mol. Spectrosc.
363
,
111170
(
2019
).
46.
J. C.
Amicangelo
and
Y.-P.
Lee
,
J. Chem. Phys.
153
,
164302
(
2020
).
47.
K. A.
Haupa
,
G.
Tarczay
, and
Y.-P.
Lee
,
J. Am. Chem. Soc.
141
,
11614
(
2019
).
48.
K. A.
Haupa
,
A. I.
Strom
,
D. T.
Anderson
, and
Y.-P.
Lee
,
J. Chem. Phys.
151
,
234302
(
2019
).
49.
K. A.
Haupa
,
W.-S.
Ong
, and
Y.-P.
Lee
,
Phys. Chem. Chem. Phys.
22
,
6192
(
2020
).
50.
P. L.
Raston
and
D. T.
Anderson
,
Phys. Chem. Chem. Phys.
8
,
3124
(
2006
).
51.
P. L.
Raston
and
D. T.
Anderson
,
J. Chem. Phys.
126
,
021106
(
2007
).
52.
S. C.
Kettwich
,
P. L.
Raston
, and
D. T.
Anderson
,
J. Phys. Chem. A
113
,
7621
(
2009
).
53.
P. L.
Raston
,
S. C.
Kettwich
, and
D. T.
Anderson
,
Low Temp. Phys.
36
,
392
(
2010
).
54.
P. L.
Raston
,
S. C.
Kettwich
, and
D. T.
Anderson
,
J. Mol. Spectrosc.
310
,
72
(
2015
).
55.
M.
Bahou
,
Y.-J.
Wu
, and
Y.-P.
Lee
,
Angew. Chem., Int. Ed.
53
,
1021
(
2014
).
56.
M.
Bahou
,
P.
Das
,
Y.-F.
Lee
,
Y.-J.
Wu
, and
Y.-P.
Lee
,
Phys. Chem. Chem. Phys.
16
,
2200
(
2014
).
57.
M.
Tsuge
,
C.-Y.
Tseng
, and
Y.-P.
Lee
,
Phys. Chem. Chem. Phys.
20
,
5344
(
2018
).
58.
L.
Khriachtchev
,
M.
Pettersson
,
S.
Tuominen
, and
M.
Räsänen
,
J. Chem. Phys.
107
,
7252
(
1997
).
59.
S.
Góbi
,
I. P.
Csonka
,
G.
Bazsó
, and
G.
Tarczay
,
ACS Earth Space Chem.
5
,
1180
(
2021
).
60.
A.
Schneiker
,
S.
Góbi
,
P. R.
Joshi
,
G.
Bazsó
,
Y.-P.
Lee
, and
G.
Tarczay
,
J. Phys. Chem. Lett.
12
,
6744
(
2021
).
61.
M.
Tsuge
,
J.
Kalinowski
,
R. B.
Gerber
, and
Y.-P.
Lee
,
J. Phys. Chem. A
119
,
2651
(
2015
).
62.
D.
Drouin
,
A. R.
Couture
,
D.
Joly
,
X.
Tastet
,
V.
Aimez
, and
R.
Gauvin
,
Scanning
29
,
92
(
2007
).
63.
T.
Shimanouchi
,
Tables of Molecular Vibrational Frequencies Consolidated Volume I
(
National Bureau of Standards
,
1972
).
64.
L. M.
Nxumalo
and
T. A.
Ford
,
J. Mol. Struct.
347
,
495
(
1995
).
65.
S. W.
Han
and
K.
Kim
,
J. Phys. Chem.
100
,
17124
(
1996
).
66.
A. J.
Barnes
and
H. E.
Hallam
,
Trans. Faraday Soc.
66
,
1920
(
1970
).
67.
A. J.
Barnes
and
H. E.
Hallam
,
Trans. Faraday Soc.
66
,
1932
(
1970
).
68.
J. C.
Dobrowolski
,
S.
Ostrowski
,
R.
Kołos
, and
M. H.
Jamróz
,
Vib. Spectrosc.
48
,
82
(
2008
).
69.
C. J.
Bennett
,
S.-H.
Chen
,
B.-J.
Sun
,
A. H. H.
Chang
, and
R. I.
Kaiser
,
Astrophys. J.
660
,
1588
(
2007
).
70.
S.
Maity
,
R. I.
Kaiser
, and
B. M.
Jones
,
Phys. Chem. Chem. Phys.
17
,
3081
(
2015
).
71.
K. M.
Yocum
,
S. N.
Milam
,
P. A.
Gerakines
, and
S. L.
Widicus Weaver
,
Astrophys. J.
913
,
61
(
2021
).
72.
Y. A.
Tsegaw
,
S.
Góbi
,
M.
Förstel
,
P.
Maksyutenko
,
W.
Sander
, and
R. I.
Kaiser
,
J. Phys. Chem. A
121
,
7477
(
2017
).
73.
W.
Zheng
and
R. I.
Kaiser
,
J. Phys. Chem. A
114
,
5251
(
2010
).
75.
G. E.
Leroi
,
G. E.
Ewing
, and
G. C.
Pimentel
,
J. Chem. Phys.
40
,
2298
(
1964
).
76.
M. G. K.
Thompson
and
J. M.
Parnis
,
J. Phys. Chem. A
112
,
12109
(
2008
).
77.
K. B.
Harvey
and
J. F.
Ogilvie
,
Can. J. Chem.
40
,
85
(
1962
).
78.
H.
Khoshkhoo
and
E. R.
Nixon
,
Spectrochim. Acta, Part A
29
,
603
(
1973
).
80.
S.-Y.
Chiang
,
Y.-C.
Hsu
, and
Y.-P.
Lee
,
J. Chem. Phys.
90
,
81
(
1989
).
81.
M. J.
Irvine
,
J. G.
Mathieson
, and
A. D. E.
Pullin
,
Aust. J. Chem.
35
,
1971
(
1982
).
82.
A.
Schriver
,
L.
Schriver-Mazzuoli
, and
A. A.
Vigasin
,
Vib. Spectrosc.
23
,
83
(
2000
).
83.
C. B.
Moore
and
G. C.
Pimentel
,
J. Chem. Phys.
38
,
2816
(
1963
).
84.
M.
Hawkins
and
L.
Andrews
,
J. Am. Chem. Soc.
105
,
2523
(
1983
).
85.
C. O.
Della Védova
and
O.
Sala
,
J. Raman Spectrosc.
22
,
505
(
1991
).
86.
A.
Engdahl
and
B.
Nelander
,
J. Chem. Soc. Faraday Trans.
88
,
177
(
1992
).
87.
W.
Chin
,
M.
Chevalier
,
R.
Thon
,
R.
Pollet
,
J.
Ceponkus
, and
C.
Crépin
,
J. Chem. Phys.
140
,
224319
(
2014
).
88.
C. E.
Blom
and
H. H.
Günthard
,
Chem. Phys. Lett.
84
,
267
(
1981
).
89.
H.
Takeuchi
and
M.
Tasumi
,
Chem. Phys.
77
,
21
(
1983
).
90.
Z.
Mielke
,
K. G.
Tokhadze
,
Z.
Latajka
, and
E.
Ratajczak
,
J. Phys. Chem.
100
,
539
(
1996
).
91.
M.
Pettersson
,
S.
Tuominen
, and
M.
Räsänen
,
J. Phys. Chem. A
101
,
1166
(
1997
).
92.
B.-M.
Cheng
,
J.-W.
Lee
, and
Y.-P.
Lee
,
J. Phys. Chem.
95
,
2814
(
1991
).
93.
X.
Zhang
,
M. R.
Nimlos
,
G. B.
Ellison
,
M. E.
Varner
, and
J. F.
Stanton
,
J. Chem. Phys.
124
,
084305
(
2006
).
94.
O.
Grasset
,
M. K.
Dougherty
,
A.
Coustenis
,
E. J.
Bunce
,
C.
Erd
,
D.
Titov
,
M.
Blanc
,
A.
Coates
,
P.
Drossart
,
L. N.
Fletcher
,
H.
Hussmann
,
R.
Jaumann
,
N.
Krupp
,
J.-P.
Lebreton
,
O.
Prieto-Ballesteros
,
P.
Tortora
,
F.
Tosi
, and
T.
van Hoolst
,
Planet. Space Sci.
78
,
1
(
2013
).
95.
See https://www.almaobservatory.org/en/home/ for information about complex molecules that have already been detected by ALMA; accessed June 21, 2021.
96.
See https://www.europlanet-society.org/europlanet-society/regional-hubs/central-europe/ for information about possible collaborations under the umbrella of EUROPLANET society; accessed June 21, 2021.
You do not currently have access to this content.