We report a non-blocking high-resolution digital delay line based on an asynchronous circuit design. Field-programmable gate array logic primitives were used as a source of delay and optimally arranged using combinatorial optimization. This approach allows for an efficient trade-off of the resolution and a delay range together with a minimized dead time operation. We demonstrate the method by implementing the delay line adjustable from 23 ns up to 1635 ns with a resolution of 10 ps. We present a detailed experimental characterization of the device focusing on thermal instability, timing jitter, and pulse spreading, which represent three main issues of the asynchronous design. We found a linear dependence of the delay on the temperature with the slope of 0.2 ps K−1 per logic primitive. We measured the timing jitter of the delay to be in the range of 7–165 ps, linearly increasing over the dynamic range of the delay. We reduced the effect of pulse spreading by introducing pulse shrinking circuits and reached the overall dead time of 4–22.5 ns within the dynamic range of the delay. The presented non-blocking delay line finds usage in applications where the dead time minimization is crucial, and tens of picoseconds of excess jitter is acceptable, such as in many advanced photonic networks.

1.
P.
Antonioli
,
A.
Kluge
,
W.
Riegler
, and
ALICE Collaboration
, “
Upgrade of the ALICE readout and trigger system
,” Technical Report No. ALICE-TDR-015,
2013
.
2.
A.
Murray
and
P.
Hammond
,
Meas. Sci. Technol.
10
,
225
(
1999
).
3.
Y.
Liu
,
H.
Li
,
Y.
Wang
,
T.
Xing
,
H.
Baghaei
,
J.
Uribe
,
R.
Farrell
, and
W.-H.
Wong
,
IEEE Trans. Nucl. Sci.
50
,
1487
(
2003
).
4.
O.
Siegmund
,
J.
Vallerga
,
P.
Jelinsky
,
M.
Redfern
,
X.
Michalet
, and
S.
Weiss
, in
2005 IEEE Nuclear Science Symposium Conference Record
(
IEEE
,
2005
).
5.
M. A.
Gearba
,
H. A.
Camp
,
M. L.
Trachy
,
G.
Veshapidze
,
M. H.
Shah
,
H. U.
Jang
, and
B. D.
DePaola
,
Phys. Rev. A
76
,
013406
(
2007
).
6.
P. A. J.
Nuyts
,
P.
Singerl
,
F.
Dielacher
,
P.
Reynaert
, and
W.
Dehaene
,
IEEE J. Solid-State Circuits
47
,
1681
(
2012
).
7.
J. G.
Marques
and
C.
Cruz
,
Nucl. Instrum. Methods Phys. Res., Sect. A
745
,
50
(
2014
).
8.
L.
Sliwczynski
,
P.
Krehlik
,
L.
Buczek
, and
M.
Lipinski
,
IEEE Trans. Instrum. Meas.
60
,
1480
(
2011
).
9.
A.
Boaron
,
B.
Korzh
,
R.
Houlmann
,
G.
Boso
,
D.
Rusca
,
S.
Gray
,
M.-J.
Li
,
D.
Nolan
,
A.
Martin
, and
H.
Zbinden
,
Appl. Phys. Lett.
112
,
171108
(
2018
).
10.
F.
Flamini
,
N.
Spagnolo
, and
F.
Sciarrino
,
Rep. Prog. Phys.
82
,
016001
(
2019
).
11.
S.
Slussarenko
and
G. J.
Pryde
,
Appl. Phys. Rev.
6
,
041303
(
2019
).
12.
C.
Zhang
,
W.
Li
,
Y.
Hu
,
T.
Yang
,
G.
Jin
, and
X.
Jiang
,
Rev. Sci. Instrum.
87
,
113107
(
2016
).
13.
J.
Hloušek
,
M.
Dudka
,
I.
Straka
, and
M.
Ježek
,
Phys. Rev. Lett.
123
,
153604
(
2019
).
14.
E.
Arabul
,
S.
Paesani
,
S.
Tancock
,
J.
Rarity
, and
N.
Dahnoun
,
IEEE Photonics J.
12
,
1
(
2020
).
15.
G. J.
Mendoza
,
R.
Santagati
,
J.
Munns
,
E.
Hemsley
,
M.
Piekarek
,
E.
Martín-López
,
G. D.
Marshall
,
D.
Bonneau
,
M. G.
Thompson
, and
J. L.
O’Brien
,
Optica
3
,
127
(
2016
).
16.
C.
Xiong
,
X.
Zhang
,
Z.
Liu
,
M. J.
Collins
,
A.
Mahendra
,
L. G.
Helt
,
M. J.
Steel
,
D. Y.
Choi
,
C. J.
Chae
,
P. H. W.
Leong
, and
B. J.
Eggleton
,
Nat. Commun.
7
,
10853
(
2016
).
17.
F.
Kaneda
and
P. G.
Kwiat
,
Sci. Adv.
5
,
eaaw8586
(
2019
).
18.
V.
Švarc
,
J.
Hloušek
,
M.
Nováková
,
J.
Fiurášek
, and
M.
Ježek
,
Opt. Express
28
,
11634
(
2020
).
19.
P.
Dudek
,
S.
Szczepanski
, and
J. V.
Hatfield
,
IEEE J. Solid-State Circuits
35
,
240
247
(
2000
).
20.
K.
Cui
,
X.
Li
, and
R.
Zhu
,
Rev. Sci. Instrum.
88
,
064703
(
2017
).
21.
G.
Bédard
,
Proc. Phys. Soc.
90
,
131
(
1967
).
22.
I.
Straka
,
J.
Grygar
,
J.
Hloušek
, and
M.
Ježek
,
J. Lightwave Technol.
38
,
4765
(
2020
).
23.
H. U.
Jang
,
J.
Blieck
,
G.
Veshapidze
,
M. L.
Trachy
, and
B. D.
DePaola
,
Rev. Sci. Instrum.
78
,
094702
(
2007
).
24.
S.
Handa
,
T.
Domalain
, and
K.
Kose
,
Rev. Sci. Instrum.
78
,
084705
(
2007
).
25.
E. E.
Eyler
,
Rev. Sci. Instrum.
82
,
013105
(
2011
).
26.
R.
Hošák
and
M.
Ježek
,
Rev. Sci. Instrum.
89
,
045103
(
2018
).
27.
Y.
Song
,
H.
Liang
,
L.
Zhou
,
J.
Du
,
J.
Ma
, and
Z.
Yue
, in
2011 International Conference on Electronics, Communications and Control (ICECC)
(
IEEE
,
2011
), pp.
2116
2118
.
28.
K.
Perko
and
R.
Szplet
,
Meas. Autom. Monit.
61
,
311
(
2015
).
29.
R.
Giordano
,
F.
Ameli
,
P.
Bifulco
,
V.
Bocci
,
S.
Cadeddu
,
V.
Izzo
,
A.
Lai
,
S.
Mastroianni
, and
A.
Aloisio
,
IEEE Trans. Nucl. Sci.
62
,
3163
(
2015
).
30.
Y.
Yao
,
Z.
Wang
,
H.
Lu
,
L.
Chen
, and
G.
Jin
,
Nucl. Instrum. Methods Phys. Res., Sect. A
832
,
103
(
2016
).
31.
S.
Berrima
,
Y.
Blaquière
, and
Y.
Savaria
, in
2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS)
(
IEEE
,
2017
), pp.
918
921
.
32.
M.
Zhang
,
H.
Wang
, and
Y.
Liu
,
IEEE Access
5
,
6842
(
2017
).
33.
F.
Garzetti
,
N.
Lusardi
,
L. D.
Lalla
,
M.
Gustin
, and
A.
Geraci
, in
2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC)
(
IEEE
,
2018
).
34.
X.
Qin
,
W.-Z.
Zhang
,
L.
Wang
,
Y.
Tong
,
H.
Yang
,
Y.
Rui
,
X.
Rong
, and
J.-F.
Du
,
Rev. Sci. Instrum.
89
,
074701
(
2018
).
35.
P.
Kwiatkowski
and
R.
Szplet
, in
2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
(
IEEE
,
2018
).
36.
W.-Z.
Zhang
,
X.
Qin
,
L.
Wang
,
Y.
Tong
,
Y.
Rui
,
X.
Rong
, and
J.-F.
Du
,
Rev. Sci. Instrum.
90
,
114702
(
2019
).
37.
P.
Kwiatkowski
,
Measurement
177
,
109267
(
2021
).
38.
G.
Mazin
, Non-blocking programmable delay line—GitHub repository, https://github.com/glebmmazin/delayline,
2021
.
39.
High Speed Rail-to-Rail Input Comparator with LVDS Compatible Outputs, Analog Devices,
2015
.
40.
Octal Bus Transceiver and 3.3 V to 5 V Shifter with 3-State Outputs, Texas Instruments,
2015
.
41.
H.
Xia
,
G.
Cao
, and
N.
Dong
,
Rev. Sci. Instrum.
90
,
044706
(
2019
).
You do not currently have access to this content.